火箭飞行速度时攻角是一定的吗

声明:论坛言论仅代表网友个人观点,不代表超级大本营军事网站立场
Powered by Discuz F1 &
超级大本营军事网站
最具影响力中文军事论坛 - Most Influential Chinese Military Forum【图文】导弹飞行力学第一章_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
导弹飞行力学第一章
上传于||暂无简介
大小:2.51MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢飞行基础知识
共 5552 浏览 10 回帖&&
发帖: 195 篇
在线时长: 30 小时
飞行基础知识
一、飞行基础知识①升力与阻力详解
升力是怎样产生的
任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?
相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?
来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
当飞机的机翼为对称形状,气流沿着机翼对称轴流动时,由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。
飞机的阻力
凡是懂得物理知识的人都知道,飞机在飞行的过程中,机体上所受的力是平衡的。飞机的重力与飞机产生的升力平衡,而飞机的发动机的作用则是克服飞机所受的阻力,推动飞机前进,使得飞机相对于空气运动,从而产生升力。大家肯定要想,飞机发动机的功率那么大,难道飞机上所受的阻力有那么大吗?的确,飞机在高速飞行的同时,会因为不同原因受到非常大的阻力。从产生阻力的不同原因来说,飞机所受的阻力可以分为摩擦阻力、压差阻力、诱导阻力、干扰阻力、激波阻力等。
当两个物体相互滑动的时候,在两个物体上就会产生与运动方向相反的力,阻止两个物体的运动,这就是物体之间的摩擦阻力。当飞机在空气中飞行时,飞机也会受到空气的摩擦阻力,飞机的摩擦阻力是因为空气的粘性造成的。当气流流过物体时,由于粘性,空气微团与物体表面发生摩擦,阻滞了气流的流动,这就是物体对空气的摩擦阻力,反之,空气对物体也给予了摩擦阻力。摩擦阻力是在边界层中产生的。所谓边界层就是紧贴物体表面,流速由外部流体的自由流速逐渐降低到零的那一层薄薄的空气层。边界层中气流的流动情况是不同的。一般机翼大约在最大厚度之前,边界层的气流各层不相混杂而成层地流动,这部分叫做“层流边界层”。在这之后,气流的活动转变为杂乱无章,并且出现了漩涡和横向流动,这部分叫做“紊流边界层”。从“层流边界层”转变为 “紊流边界层”的那一点叫做“转捩点”。
边界层中的摩擦阻力大小与流动情况有很大关系,从大量的实践证明,对于层流流动,物体表面受到的摩擦阻力小,而紊流流动对物面的摩擦阻力大的多。在普通的机翼表面,既有层流边界层,又有紊流边界层,所以为了减小摩擦阻力,人们就千方百计地使物体表面的流动保持层流状态,例如通过在机翼表面上钻孔,吸除紊流边界层,这样就可以达到减阻的目的。另外,提高加工精度,使层流边界层尽量的长,延缓转捩点的出现,甚至抑制它的出现,也可以起到很好的效果。这些都是飞机设计中的层流机翼的概念。物体表面受到的摩擦阻力还跟物体的表面积有关系,面积越大,阻力也越大。因此在人们试图减小飞行阻力的时候,减小飞机的尾翼或者机翼的面积也是一个有效的方法。当然前提条件是保证产生足够的升力和控制力。例如使用推力矢量技术的飞机,由于有了发动机推力直接用于飞行控制,这样飞机的尾翼就可以减小或者去除,这样就可以大大的减小摩擦阻力。
机翼同一般物体相似,也有摩擦阻力和压差阻力。对于机翼而言,这二者合称“翼型阻力”。机翼上除翼型阻力外,还有“诱导阻力”(又叫“感应阻力”)。这是机翼所独有的一种阻力。因为这种阻力是伴随着机翼上举力的产生而产生的。也许可以说它是为了产生举力而付出的一种代价。
如果有一架飞机以某一正迎角a作水平飞行,它的机翼上面的压强将降低,而下面的压强将增高,加上空气摩擦力,于是产生了举力Y。这是气流作用到机翼上的力,根据作用和反作用定律,必然有一个反作用力即负举刀力(-Y),由机翼作用到气流上,它的方向向下,所以使气流向下转折一个角度a,这一角度叫“下洗角”。随着下洗角的出现,同时出现了气流向下的速度。这一速度叫做“下洗速(w)”。下洗的存在还可由风洞实验观察出来。
由实验可知:
当飞机飞行时,下翼面压强大、上翼面压强小。由于翼展的长度是有限的,所以上下翼面的压强差使得气流从下翼面绕过两端翼尖,向上翼面流动。当气流绕流过翼尖时,在翼尖那儿不断形成旋涡。旋涡就是旋转的空气团。随着飞机向前方飞行,旋涡就从翼尖向后方流动,并产生了向下的下洗速(w)。下洗速在两个翼尖处最大,向中心逐渐减小,在中心处减到最小。这是因为旋涡可以诱导四周的空气随之旋转,而这又是由于空气粘性所起的作用。空气在旋转时,越靠内圈,旋转得越快,越靠外圈,旋转得越慢。因此,离翼尖越远,气流垂直向下的下洗速就越小。
图示的就是某一个翼剖面上的下洗速度。它与原来相对速度v组成了合速度u 。u与v的夹角就是下洗角a1。下洗角使得原来的冲角a减小了。根据举力Y原来的函义,它应与相对速度v垂直,可是气流流过机翼以后,由于下洗速w的作用,使v的方向改变,向下转折一个下洗角a1,而成为u。因此,举力Y也应当偏转一角度a1,而与u垂直成为y 1。此处下洗角很小,因而y与y1一般可看成相等。回这时飞机仍沿原来v的方向前进。y1既不同原来的速度v垂直,必然在其上有一投影为Q;。它的方向与飞机飞行方向相反,所起的作用是阻拦飞机的前进。实际上是一种阻力。这种阻力是由举力的诱导而产生的,因此叫做“诱导阻力”。它是由于气流下洗使原来的举力偏转而引起的附加阻力,并不包含在翼型阻力之内。
图中机翼前面的一排小箭头表示原来的流速,后面的一排小箭头则表示流过机翼后偏转一个角度的流速。诱导阻力同机翼的平面形状,翼剖面形状,展弦比,特别是同举力有关。
“压差阻力”的产生是由于运动着的物体前后所形成的压强差所形成的。压强差所产生的阻力、就是“压差阻力”。压差阻力同物体的迎风面积、形状和在气流中的位置都有很大的关系。
用刀把一个物体从当中剖开,正对着迎风吹来的气流的那块面积就叫做“迎风面积”。如果这块面积是从物体最粗的地方剖开的,这就是最大迎风面积。从经验和实验都不难证明:形状相同的物体的最大迎风面积越大,压差阻力也就越大。
物体形状对压差阻力也有很大的作用。把一块圆形的平板,垂直地放在气流中。它的前后会形成很大的压差阻力。平板后面会产生大量的涡流,而造成气流分离现象。如果在圆形平板的前面加上一个圆锥体,它的迎风面积并没有改变,但形状却变了。平板前面的高压区,这时被圆锥体填满了。气流可以平滑地流过,压强不会急剧升高,显然这时平板后面仍有气流分离,低压区仍然存在,但是前后的压强差却大为减少,因而压差阻力降低到原来平板压差阻力的大约五分之一。
如果在平板后面再加上一个细长的圆锥体,把充满旋涡的低压区也填满,使得物体后面只出现很少的旋涡,那么实验证明压差阻力将会进一步降低到原来平板的大约二十到二十五分之象这样前端圆纯、后面尖细,象水滴或雨点似的物体,叫做“流线形物体”,简称“流线体”。在迎风面积相同的条件下,它的压差阻力最小。这时阻力的大部分是摩擦阻力。除了物体的迎风面积和形状外,物体在气流中的位置也影响到压差阻力的大小。
物体上的摩擦阻力和压差阻力合起来叫做“迎面阻力”。一个物体,究竟哪一种阻力占主要部分,这要取决于物体的形状和位置。如果是流线体,那么它的迎面阻力中主要部分是摩擦阻力。如果形状远离流线体的式样,那么压差阻力占主要部分,摩擦阻力则居次要位置,而且总的迎面阻力也较大。
飞机上除了摩擦阻力,压差阻力和诱导阻力以外,还有一种“干扰阻力”值得我们注意,实践表明,飞机的各个部件,如机翼、机身、尾翼等,单独放在气流中所产生的阻力的总和并不等于、而是往往小于把它们组成一个整体时所产生的阻力。所谓“干扰阻力”就是飞机各部分之间由于气流相互干扰而产生的一种额外阻力。
如图所示,气流流过机翼和机身的连接处,由于机翼和机身二者形状的关系,在这里形成了一个气流的通道。在A处气流通道的截面积比较大,到C点翼面最圆拱的地方,气流通道收缩到最小,随后到B处又逐渐扩大。根据流体的连续性定理和伯努利定理,C处的速度大而压强小,B处的速度小而压强大,所以在CB一段通道中,气流有从高压区B回流到低压区 C的趋势。这就形成了一股逆流。但飞机前进不断有气流沿通道向后流,遇到了后面的这股逆流就形成了气流的阻塞现象,使得气流开始分离,而产生了很多旋涡。这些旋涡表明气流的动能有了消耗,因而产生了一种额外的阻力,这一阻力是气流互相干扰而产生的,所以叫做“干扰阻力”。不但在机翼和机身之间可能产生干扰阻力,而且在机身和尾翼连接处,机翼和发动机短舱连接处,也都可能产生。
从干扰阻力产生的原因来看,它显然和飞机不同部件之间的相对位置有关。如果在设计飞机时,仔细考虑它们的相对位置,使得它们压强的增加不大也不急剧,干扰阻力就可减小。另外,还可以采取在不同部件的连接处加装流线型的“整流片”的办法,使连接处圆滑过渡,尽可能减少漩涡的产生,也可减少“干扰阻力”。
飞机在空气中飞行时,前端对空气产生扰动,这个扰动以扰动波的形式以音速传播,当飞机的速度小于音速时,扰动波的传播速度大于飞机前进速度,因此它的传播方式为四面八方;而当物体以音速或超音速运动时,扰动波的传播速度等于或小于飞机前进速度,这样,后续时间的扰动就会同已有的扰动波叠加在一起,形成较强的波,空气遭到强烈的压缩、而形成了激波。
空气在通过激波时,受到薄薄一层稠密空气的阻滞,使得气流速度急骤降低,由阻滞产生的热量来不及散布,于是加热了空气。加热所需的能量由消耗的动能而来。在这里,能量发生了转化--由动能变为热能。动能的消耗表示产生了一种特别的阻力。这一阻力由于随激波的形成而来,所以就叫做&波阻&。从能量的观点来看,波阻就是这样产生的。
从机翼上压强分布的观点来看, 波阻产生的情况大致如下;根据对机翼所作的实验,在超音速飞行时,机翼上的压强分布如图所示。在亚音速飞行情况下,机翼上只有摩擦阻力、压差阻力和诱导阻力。它的压力分布如图中虚线所示。对图中两种不同的飞行情况压强分布加以比较,可以看出:在亚音速飞行情况下,最大稀薄度靠前,压强分布沿着与飞行相反的方向上的合力,不是很大,即阻力不是很大,其中包括翼型阻力和诱导阻力。
可是在超音速飞行情况下,压强分布变化非常大,最大稀薄度向后远远地移动到尾部,而且向后倾斜得很厉害,同时它的绝对值也有增加。因此,如果不考虑机翼头部压强的升高,那么压强分布沿与飞行相反方向的合力,急剧增大,使得整个机翼的总阻力相应有很大的增加。这附加部分的阻力就是波阻。由于它来自机翼前后的压力差,所以波阻实际上是一种压差阻力。当然,如果飞机或机翼的任何一点上的气流速度不接过音速,是不会产生激波和波阻的。
阻力对于飞机的飞行性能有很大的影响,特别是在高速飞行时,激波和波阻的产生,对飞机的飞行性能的影响更大。这是因为波阻的数值很大,能够消耗发动机一大部分动力。例如当飞行速度在音速附近时,根据计算,波阻可能消耗发动机大约全部动力的四分之三。这时阻力系数Cx急骤地增长好几倍。这就是由于飞机上出现了激波和波阻的缘故。
由上面所说的看来,波阻的大小显然同激波的形状有关,而激波的形状在飞行M数不变的情况下;又主要决定于物体或飞机的形状,特别是头部的形状。按相对于飞行速度(或气流速度)成垂直或成偏斜的状态,有正激波和斜激波两种不同的形状。成垂直的是正激波,成偏斜的是斜激波。
在飞行M数超过 1时(例如M等于 2),如果物体的头部尖削,象矛头或刀刃似的,形成的是斜激波;如果物体的头部是方楞的或圆钝的,在物体的前面形成的则是正激波。正激波沿着上下两端逐渐倾斜,而在远处成为斜激波,最后逐渐减弱成为弱扰动的边界波。斜激波的情况也是一样的,到末端也逐渐减弱而转化为边界波。在正激波之后的一小块空间,气流穿过正激波,消耗的动能很大,总是由超音速降低到亚音速,在这里形成一个亚音速区。
M数的大小也对激波的形状有影响。当M数等于 1或稍大于 1(例如M= 1.042)时,在尖头(如炮弹)物体前面形成的是正激波。如果M数超过1相当多(例如M=2.479),形成的则是斜激波。
正激波的波阻要比斜激波大,因为在正激波下,空气被压缩得很厉害,激波后的空气压强和密度上升的最高,激波的强度最大,当超音速气流通过时,空气微团受到的阻滞最强烈,速度大大降低,动能消耗很大,这表明产生的波阻很大;相反的,斜激波对气流的阻滞较小,气流速度降低不多,动能的消耗也较小,因而波阻也较小。斜激波倾斜的越厉害,波阻就越小。
从机翼截面观察气体流场状态
下图所示为:
飞机在转弯时的受力情况。假定飞机的飞行方向是由外飞进屏幕里,即飞机是在做左转弯。此时飞行员向左侧压杆,使左侧副翼上翻、右侧副翼下翻,在左翼上产生向下的力 Fa、右翼上产生向上的力 Fb,此二力以机身重心为中心形成一滚动力矩,使飞机向左翻滚。而从整架飞机来考虑,机翼左翻也使总升力 F 向左翻。在竖直和水平方向上将其分解,其竖直分力 F1 与飞机重力 G 维持平衡,保持飞机的飞行高度;水平分力 F2 提供做圆周运动所需的向心力,使飞机转弯。
同理可得,飞机在俯冲时,飞行员向前推杆使平尾上的升降舵下翻,产生向上的力抬起机尾,机头向下形成俯冲姿态;爬升时向后拉杆,升降舵上翻,产生压力压下机尾,使机头向上形成爬升姿态;蹬右踏板使方向舵右翻,产生水平向左的推力推动机尾向左,使机头向右,同理,蹬左踏板使飞机向左。
综上所述,如果把操纵杆向左推再向后拉,会使飞机左侧翻时做一个爬升动作,即一个左急转。其实,再复杂的机动动作也是由这么几块操纵面完成的,也就是操纵杆前后左右推拉以及不同高度、速度的排列组合,看起来开飞机好象不那么复杂吧,不过这只是在游戏里,要换成真的,光身体素质这一项就没几个人过得了关了。
在电子传动技术被广泛运用于航空领域之前,飞机的操控一直是依靠机械传动的,即所有操纵面的转动都要靠飞行员的体力来完成,在完成一个高过载机动时,机翼承受的加速度往往是七八个重力加速度,甚至更高,飞行员要付出的体力的巨大是可想而知的(有力回馈摇杆的玩家都能体会到)。而电子传动技术则彻底把飞行员从“力气活”里解放了出来,飞行变得更轻松了,也更注重技巧了,各种高难度的机动动作也诞生了,其难度也更多地反映出飞机的机动性能,而不是飞行员的身体素质。
网易论坛,天天相伴
中国白领丽人群
' + newItem.onLineCount+ '' + newItem.name + '';
NTES.ajax.importJs(url, function() {
var len = hotLive.
if (hotLive != '' && len != 0){
for (var i = 0; i < len-1; i++) {
var boboItem = hotLive[i],
isLive = boboItem.live,
liveHref = isLive ? boboItem.liveUrl + boboStatTag : "/" + boboStatTag,
boboLiveStat = isLive ? '' : '',
boboHtml = '';
html += boboH
if(i === 0){
html += newH
NTES(".bobo-list").attr("innerHTML", function() {
return this.innerHTML +
}, "utf-8");
}, "utf-8");
发帖: 366 篇
在线时长: 43 小时
网易论坛,天天相伴
发帖: 367 篇
在线时长: 43 小时
【回复2楼 灵魂缺口 】:
网易论坛,天天相伴
发帖: 196 篇
在线时长: 30 小时
二、飞行基础知识②航空器的特性详解
飞机的飞行性能
在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。
最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。
最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。
巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。
当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。
美研发的SR-72新型间谍飞机 飞行速度可达6倍音速
最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。
理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。
实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。
航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。
活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。飞机的活动半径略小于其航程的一半,这一指标直接构成了歼击机的战斗性能。
续航时间:是指飞机耗尽其可用燃料所能持续飞行的时间。这一性能指标对于海上巡逻机和反潜机十分重要,飞得越久就意味着能更好地完成巡逻和搜索任务。
飞机起飞着陆的性能优劣主要是看飞机在起飞和着陆时滑跑距离的长短,距离越短则性能优越。
飞机的操纵性
飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。操纵则是飞行员通过驾驶机构改变飞机的飞行状态。
操纵主要通过驾驶杆和脚蹬等驾驶机构来实现的。驾驶员推拉驾驶杆和踩脚蹬的力量被视为操纵的“输入量”,驾驶杆和脚蹬所产生的位移也可以被视为“输入量”,而飞机的反应,如迎角、侧滑角、过载、角速度、飞行速度的变化量等则视为操纵的“输出量”。
飞机操纵品质的好坏是一个与飞行员有关的带一定主观色彩的问题,但是仍然有一些基本的标准来衡量飞机的操纵品质。操纵品质常以输入量和输出量的比值(操纵性指标)来表示,这些比值不宜过小,也不易过大。如果比值太小,则操纵输入量小,输出量大,这种飞机对操纵过于敏感,不仅难于精确控制,而且也容易因反应量过大而产生失速或结构损坏等问题;如果比值过大,则操纵输入量大,输出量小,飞机对操纵反应迟钝,容易使飞行员产生错误判断,也可能造成飞机的大幅度振荡,同样导致失速或结构破坏。如果飞机在作机动飞行时,不需要飞行员复杂的操纵动作,驾驶杆力和杆位移都适当,并且飞机的反映也不过快或者过分的延迟,那么就认为该飞机具有良好的操纵性。
按运动方向的不同,飞机的操纵也分为纵向、横向和航向操纵。
改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。
使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。当驾驶员向右压驾驶杆时右副翼上偏、左副翼下偏,使右翼升力减小、左翼升力增大,从而产生向右滚转的力矩,飞机向右滚;向左压杆时,情况完全相反,飞机向左滚转。
改变航向运动的操纵称为航向操纵,由驾驶员踩脚蹬,使方向舵偏转来实现。踩右脚蹬时,方向舵向右摆动,产生向右偏航力矩,飞机机头向右偏转;踩左脚蹬时正相反,机头向左偏转。实际飞行中,横向操纵和航向操纵是不可分的,经常是相互配合、协调进行,因此横向和航向操纵常合称为横航向操纵。
飞机操纵性的好坏与飞机的稳定性之间存在着一定的排斥关系。如果飞机的焦点位置过于靠后,飞机的稳定性很好,因此飞机抵抗飞行状态变化的力和力矩会很大,飞机对飞行员操纵的响应就会很慢,飞机的操纵性也就不好。反之,飞机的焦点靠前,稳定性变差,飞机对操纵的响应变得灵敏,操纵特性变好。现代先进战斗机为了获得优良的操纵性和机动性,都将飞机设计称为气动不稳定的,而采用主动控制技术来控制飞机的稳定,从而实现好的操纵性。
飞机的稳定性
飞机的稳定性是飞机设计中衡量飞行品质的重要参数,它表示飞机在受到扰动之后是否具有回到原始状态的能力。如果飞机受到扰动(例如突风)之后,在飞行员不进行任何操纵的情况下能够回到初始状态,则称飞机是稳定的,反之则称飞机是不稳定的。
飞机的稳定性包括纵向稳定性,反映飞机在俯仰方向的稳定特性;航向稳定性,反映飞机的方向稳定特性;以及横向稳定性,反映飞机的滚转稳定特性。
关于稳定与不稳定的概念可以形象的加以说明。例如,我们将一个小球放在波浪型表面的波峰上然后轻轻的推一下,小球就会离开波峰掉入波谷,我们将小球处在波峰位置的状态称为不稳定状态。反之,如果我们将小球放在波谷并且轻轻地推一下,球在荡漾一段时间之后,仍然能够回到谷底,我们称小球处在波谷的状态为稳定状态。
飞机的稳定与否对飞行安全尤为重要,如果飞机是稳定的,当遇到突风等扰动时,飞行员可以不用干预飞机,飞机会自动回到平衡状态;如果飞机是不稳定的,在遇到扰动时,哪怕是一丁点扰动,飞行员都必须对飞机进行操纵以保持平衡状态,否则飞机就会离初始状态越来越远。不稳定的飞机不仅极大地加重了飞行员的操纵负担,使飞行员随时随地处于紧张状态,而且飞行员对飞机的操纵与飞机自身运动的相互干扰还容易诱发飞机的振荡,造成飞行事故。从现代飞机设计理论来看,莱特兄弟发明的飞机是纵向不稳定的。然而他们却成功了,这主要是因为当时飞机的速度低,飞行员有足够的时间来调整飞机的平衡。莱特兄弟曾经说过他们在试飞时曾多次失控,飞机不住地振荡,最后以滑橇触地而结束。随着飞行速度越来越快,飞行员越来越难以控制不稳定的飞机,所以一般在飞机设计中要求将飞机设计成稳定的,飞机稳定性设计也变得越来越重要了。
虽然越稳定的飞机对于提高安全性越有利,但是对于操纵性来说却越来越不利。因为越稳定的飞机,要改变它的状态就越困难,也就是说,飞机的机动性越差。所以如何协调飞机的稳定性和操纵性之间的关系,对于现代战斗机来说是一个非常值得权衡的问题。实际上为了获得更大的机动性,目前最先进的战斗机都已经被设计成不稳定的飞机。当然这样的飞机不能再通过飞行员来保持平衡,而是通过一系列其他的增稳措施,比如电传操纵等主动控制手段来自动实现飞机的稳定性。
飞机的机动性
飞机的机动性是飞机的重要战术、技术指标,是指飞机在一定时间内改变飞行速度、飞行高度和飞行方向的能力,相应地称之为速度机动性、高度机动性和方向机动性。显然飞机改变一定速度、高度或方向所需的时间越短,飞机的机动性就越好。在空战中,优良的机动性有利于获得空战的优势。
为了提高飞机的机动性,就必须在最短的时间内改变飞机的运动状态,为此就要给飞机尽量大的气动力以造成尽量大的加速度。因此可以说,飞机所能承受的过载越大,机动性就越好。
飞机为在短时间内尽快改变运动状态所实施的飞行动作称为飞机的机动动作。飞机的机动动作包括盘旋、滚转、俯冲、筋斗、战斗转弯、急跃升等。为获得尽量大的升力,飞机在机动过程中应该尽量增加迎角。然而正常飞机的极限迎角是有限的,飞机不能超过极限迎角飞行,否则就会失速。
为了实现更大的机动性,人们通过不懈的努力,通过使用推力矢量技术等途径,已经能够克服失速迎角的限制,进行过失速机动了。例如眼镜蛇机动、钟摆机动、钩子机动、榔头机动、赫布斯特机动。
放宽静稳定度
所谓静稳定度是指气动中心到飞机重心的距离,气动中心在重心之后静稳定度为正,飞机是静稳定的;气动中心在重心之前静稳定度为负,飞机是静不稳定的。
在亚音速飞行状态,普通飞机的翼身组合体的升力中心在重心稍后的某个距离(静稳定),这时翼身组合体的升力所产生的负俯仰力矩(机头向下的力矩),由平尾的下偏,以产生向下的升力来平衡,尾翼的升力从翼身组合体升力中减去,因而使总的升力减少。而且由于飞机的静稳定特性,飞机有保持原有飞行状态的趋势,使飞机的操纵也不灵活。而放宽静稳定度的飞机,气动中心可以很靠近重心也可以重合,甚至在重心的前面,飞机的稳定度变得很小甚至不稳定,飞行中主要靠主动控制系统(即自动增稳系统)主动控制相应舵面,保证飞机的稳定性。这时为保持平衡只需要较小的甚至向上的平尾升力去平衡翼身组合体的正俯仰力矩(机头向上的力矩)。
在超音速状态,无论普通构形的飞机还是放宽静稳定性的飞机,都具有作用在重心之后的翼身组合体升力矢量。因为放宽静稳定度的飞机的重心比普通飞机的重心更靠后,这样为配平由于翼身组合体升力升起的负俯仰力矩所需要的尾翼向下载荷比普通飞机要小,因而就可以大大减少尾翼足寸和重量,使其在超音速状态也具有较高的升力。
由此我们可以看出,采用放宽静稳定性的手段,可以大幅提高飞机的性能。首先,使飞机的平尾用于平衡所需的面积可以大大减小,因此平尾的重量可以减轻,阻力可以减小,另外对于静不稳定的飞机,尾翼的升力和翼身组合体升力方向一致,这样飞机的总升力也得到了提高。
研究表明,放宽静稳定度为战斗机带来的效益是当静稳定裕度取为-12%平均气动弦长时,飞机的起飞总重可减少8%,所需发动机推力可减少20%,如果再加上控制机动载荷的效果可使设计总重减少18%。
在轰炸机上采用这种技术效果也是很明显的,如CCV B-52试验机平尾面积从84平方米降到46平方米,在原发动机和起飞总重条件下,结构重量减少6.4%,航程增大4.3%,如果原载重、航程不变,起飞总重可以减少 10-15%,B-l轰炸机如果在设计初期阶段就采用放宽静稳定度要求的话,其起飞总重可减少36吨,用2台发动机就可以完成原来4台发动机的任务。如果把放宽静稳定度要求和控制机动载荷结合起来,可使轰炸机设计重量减少20%以上。
放宽静稳定度要求对战斗机性能的提高主要体现在提高战斗机的机动性方面以及完成任务的效率方面。如一架重心位置处于25%平均气动弦和一架重心位置处于38%平均气动弦的放宽静稳定度的飞机相比,在中等空载重量、最大推力、900米高度的条件下,后者转弯速度增加0.75度/秒(M=0.9时)~1.1度/秒(M=1.2时);M数从0.9增加到1.6的加速时间减少1.8秒左右;空战燃油节省180公斤;承受机动过载的能力也提高了,在M数为0.6,0.9,1.2时过载系数分别提高0.2g,0.4g,0.8g;此外还可以提高升阻比:在M<l时可提高8%,M>l时可提高15%。这些就使战斗机的机动性大大提高。
如果拿F-16战斗机和法国战斗机“幻影”Fl,瑞典的Saab-37,苏联歼击机米格-21相比,性能就很突出,除高空最大速度,F-16稍低于其他三种飞机外,其他性能均比它们优越。其原因之一就是F-16采用了主动控制技术。
突破“失速障”——过失速机动
过失速机动就是飞机在超过失速迎角之后,仍然有能力完成可操纵的战术机动。它主要用在为占据有利位置的机动飞行中。
为什么战斗机需要过失速机动能力呢?因为战斗机主要的任务就是空战,而现代的几次局部战争的经验告诉我们,空战中最频繁发生的是低空和超低空近距空战。近距空战中最重要的作战品质就是迅速瞄准敌机的能力,即在攻击中不仅能快速地改变自身的速度矢量,还能使自己始终处于对手转弯半径的内侧,这样就能使自己更快速地进入攻击位置,先敌开火。过去的空战由于作战飞机的剩余功率较小,因而十分强调抢占高度的机动能力,以达到以高度获取速度的目的。现代战斗机在中等速度下剩余功率都很大,加速性都很好,爬升率都很高,速度上已经没有多大的差距,因此通过过失速机动获取更有力的角度优势,就成为了捷径。
为什么过失速机动可以提高飞机的机动能力呢?因为在进入目视格斗状态之后,攻击机要使目标机尽快进入自己允许的发射区,目标机则要摆脱攻击机并伺机反击。这种情况下,飞机最重要的性能是最大瞬时盘旋角速度。一般说来飞机的最大瞬时盘旋角速度在马赫数0.4-0.6之间最大,所以要在格斗中争取角度优势,就要求飞机能从最大马赫数尽快地减速至中、低速度。飞机在进行过失速机动时,由于大迎角下自身受到的气动阻力较大,飞机的速度可以迅速降低,有利于偏转机头实施快速对敌指向,或在转弯中尽快减速和改变方向是敌机冲过目标,这在近距格斗中具有很高的空战效能。
然而,在传统的飞行理论中,飞机的迎角是不能够超过失速迎角的,否则就会失速,进入尾旋甚至坠毁。随着现代航空科技的发展,通过采用推力矢量技术等方法,已经使飞机有可能超过失速迎角飞行了。
美国和德国联合研制的X-31,就是用于进行过失速机动技术验证的验证机。它已经完成过飞行迎角达74度的赫布斯特(Herbst)机动。
最著名的过失速机动则应该是俄罗斯的苏-27飞出的眼镜蛇机动,它曾经让全世界的人震惊。
当人们从螺旋桨时代进入喷气时代时,曾经为突破音速而欢欣鼓舞,这被称作突破“音障”;当人们将飞行速度提高到马赫数大于3之后,克服了高速带来的高热问题,被称为突破“热障”;于是,当我们成功的超越了曾被认为不能超越的失速迎角时,我们也就突破了“失速障”。
过失速解决办法:推力矢量技术
简而言之,推力矢量技术就是通过偏转发动机喷流的方向,从而获得额外操纵力矩的技术。我们知道,作用在飞机上的推力是一个有大小、有方向的量,这种量被称为矢量。然而,一般的飞机上,推力都顺飞机轴线朝前,方向并不能改变,所以我们为了强调这一技术中推力方向可变的特点,就将它称为推力矢量技术。
不采用推力矢量技术的飞机,发动机的喷流都是与飞机的轴线重合的,产生的推力也沿轴线向前,这种情况下发动机的推力只是用于克服飞机所受到的阻力,提供飞机加速的动力。
采用推力矢量技术的飞机,则是通过喷管偏转,利用发动机产生的推力,获得多余的控制力矩,实现飞机的姿态控制。其突出特点是控制力矩与发动机紧密相关,而不受飞机本身姿态的影响。因此,可以保证在飞机作低速、大攻角机动飞行而操纵舵面几近失效时利用推力矢量提供的额外操纵力矩来控制飞机机动。第四代战斗机要求飞机要具有过失速机动能力,即大迎角下的机动能力。推力矢量技术恰恰能提供这一能力,是实现第四代战斗机战术、技术要求的必然选择。
我们可以通过图解来了解推力矢量技术的原理。
普通飞机的飞行迎角是比较小的,在这种状态下飞机的机翼和尾翼都能够产生足够的升力,保证飞机的正常飞行。当飞机攻角逐渐增大,飞机的尾翼将陷入机翼的低能尾流中,造成尾翼失速,飞机进入尾旋而导致坠毁。这个时候,纵然发动机工作正常,也无法使飞机保持平衡停留在空中。
然而当飞机采用了推力矢量之后,发动机喷管上下偏转,产生的推力不再通过飞机的重心,产生了绕飞机重心的俯仰力距,这时推力就发挥了和飞机操纵面一样的作用。由于推力的产生只与发动机有关系,这样就算飞机的迎角超过了失速迎角,推力仍然能够提供力矩使飞机配平,只要机翼还能产生足够大的升力,飞机就能继续在空中飞行了。而且,通过实验还发现推力偏转之后,不仅推力能产生直接的投影升力,还能通过超环量效应令机翼产生诱导升力,使总的升力提高。
装备了推力矢量技术的战斗机由于具有了过失速机动能力,拥有极大的空中优势,美国用装备了推力矢量技术的X-31验证机与F-18做过模拟空战,结果X-31以1:32的战绩遥遥领先于F-18。
使用推力矢量技术的飞机不仅其机动性大大提高,而且还具有前所未有的短距起落能力,这是因为使用推力矢量技术的飞机的超环量升力和推力在升力方向的分量都有利于减小飞机的离地和接地速度,缩短飞机的滑跑距离。另外,由于推力矢量喷管很容易实现推力反向,飞机在降落之后的制动力也大幅提高,因此着陆滑跑距离更加缩短了。
如果发动机的喷管不仅可以上下偏转,还能够左右偏转,那么推力不仅能够提供飞机的俯仰力矩,还能够提供偏航力矩,这就是全矢量飞机。
推力矢量技术的运用提高了飞机的控制效率,使飞机的气动控制面,例如垂尾和立尾可以大大缩小,从而飞机的重量可以减轻。另外,垂尾和立尾形成的角反射器也因此缩小,飞机的隐身性能也得到了改善。
推力矢量技术是一项综合性很强的技术,它包括推力转向喷管技术和飞机机体/推进/控制系统一体化技术。推力矢量技术的开发和研究需要尖端的航空科技,反映了一个国家的综合国力,目前世界上只有美国和俄罗斯掌握了这一技术,F-22和Su-37就是两国装备了这一先进技术的各自代表机种。
最著名的过失速机动则应该是俄罗斯的苏-27飞出的眼镜蛇机动,它曾经让全世界的人震惊。
眼镜蛇机动
眼镜蛇机动是著名的过失速机动动作,是由前苏联的Su-27战斗机首先试飞成功的。1989年6月在巴黎航展上,前苏联著名试飞员普加乔夫第一次在全世界面前表演了眼镜蛇机动,震惊全场,因此这一机动动作又被称为“普加乔夫眼镜蛇”机动。
机动过程中飞行员快速向后拉杆使机头上仰至110度~120度之间,形成短暂的机尾在前,机头在后的平飞状态,然后推杆压机头,再恢复到原来水平状态。机动时飞机进入的速度约为425公里/小时,飞机以超过每秒110公里/小时的速率减速,然后减速到148公里/小时,这个动作仅使飞机承受3.5~4g的过载,在整个机动过程中,飞机的飞行高度几乎没有什么变化。
当我们路过超音速飞机的机场附近时,有可能会听到“嘣嘣”两声巨响,犹如晴天霹雳,震耳欲聋。如果是你初次听到的话还会大吃一惊!以为是飞机在空中放炮,或者出了什么问题。其实不然,这就是超音速飞行中的所谓“音爆”(也称为“爆音”)。
那么,“音爆”究竟是怎么回事,为什么只有在超音速飞行时才会出现呢?要想了解这一点,我们可以从一种常见的自然现象谈起:
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面,也就是我们常常说的“一石激起千层浪”。但如果是在水面上运动的物体在水中激起的水波就不是这样了,例如一艘快艇在水中高速前进时,我们看到它激起的水波就不是一圈一圈地向外传,而是从艇前开始,呈一楔形向外传播。同时我们可以看到前缘密集,波浪很大,而后面波浪就很小。这种波我们称为楔形水波。此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。我们平时听见的声音就是声波传入耳内刺激鼓膜产生的。当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。这种响声就称之为“音爆”。
“音爆”只有在飞机作超音速飞行时才会出现。当飞机在一定高度下以超音速飞行时,由于激波引起的强烈的压力变化。使我们听到了“音爆”。那么,随同飞机一道前进的飞行员是不是也会有同样的感觉呢?其实飞行员是不会听到这种响声的,因为飞行员坐在座舱里,激波引起的压强、密度、温度的变化,飞行员是无法感觉到的。即使座舱不密封。由于飞行员始终处于前激波的后面、后激波的前面,也就是说,他是处在一个暂时的稳定的等压强的条件下,也是听不到的。
“音爆”的强弱以及即对地面影响的大小,与飞机飞行高度有着直接的关系。因为,激波和水被一样,距离越远,波的强度也越弱。当飞机作低空超音速飞行时,不但地面的人畜能听到震耳欲聋的巨响,影响人们的生活和工作,严重的还可以震碎玻璃,甚至损坏不坚固的建筑物,造成直接的损失。随着飞行高度的增加,这种影响越来越弱,当超过一定的高度后,地面基本不会受到影响。
网易论坛,天天相伴
中国白领丽人群
发帖: 197 篇
在线时长: 30 小时
三、飞行基础知识③航空发动机分类
飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。
飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:
吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
活塞式发动机
航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。
(一)活塞式发动机的主要组成
主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。
气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。 曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。
(二)活塞式发动机的工作原理
活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个工作循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀冲程和排气冲程。
发动机开始工作时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是 1比 15即燃烧一公斤的汽油需要15公斤的空气。
进气冲程完毕后,开始了第二冲程,即“压缩冲程”。这时曲轴靠惯性作用继续旋转,把活塞由下死点向上推动。这时进气门也同排气门一样严密关闭。气缸内容积逐渐减少,混合气体受到活塞的强烈压缩。当活塞运动到上死点时,混合气体被压缩在上死点和气缸头之间的小空间内。这个小空间叫作“燃烧室”。这时混合气体的压强加到十个大气压。温度也增加到摄氏4OO度左右。压缩是为了更好地利用汽油燃烧时产生的热量,使限制在燃烧室这个小小空间里的混合气体的压强大大提高,以便增加它燃烧后的做功能力。
当活塞处于下死点时,气缸内的容积最大,在上死点时容积最小(后者也是燃烧室的容积)。混合气体被压缩的程度,可以用这两个容积的比值来衡量。这个比值叫“压缩比”。活塞航空发动机的压缩比大约是5到8,压缩比越大,气体被压缩得越厉害,发动机产生的功率也就越大。
压缩冲程之后是“工作冲程”,也是第三个冲程。在压缩冲程快结束,活塞接近上死点时,气缸头上的火花塞通过高压电产生了电火花,将混合气体点燃,燃烧时间很短,大约0.015秒;但是速度很快,大约达到每秒30米。气体猛烈膨胀,压强急剧增高,可达6O到75个大气压,燃烧气体的温度到摄氏O度。燃烧时,局部温度可能达到三、四千度,燃气加到活塞上的冲击力可达15吨。活塞在燃气的强大压力作用下,向下死点迅速运动,推动连杆也门下跑,连杆便带动曲轴转起来了。
这个冲程是使发动机能够工作而获得动力的唯一冲程。其余三个冲程都是为这个冲程作准备的。
第四个冲程是“排气冲程”。工作冲程结束后,由于惯性,曲轴继续旋转,使活塞由下死点向上运动。这时进气门仍旧关闭,而排气门大开,燃烧后的废气便通过排气门向外排出。 当活塞到达上死点时,绝大部分的废气已被排出。然后排气门关闭,进气门打开,活塞又由上死点下行,开始了新的一次循环。
从进气冲程吸入新鲜混合气体起,到排气冲程排出废气止,汽油的热能通过燃烧转化为推动活塞运动的机械能,带动螺旋桨旋转而作功,这一总的过程叫做一个“循环”。这是一 种周而复始的运动。由于其中包含着热能到机械能的转化,所以又叫做“热循环”。
活塞航空发动机要完成四冲程工作,除了上述气缸、活塞、联杆、曲轴等构件外,还需要一些其他必要的装置和构件。
(三)活塞式航空发动机的辅助工作系统
发动机除主要部件外,还须有若干辅助系统与之配合才能工作。主要有进气系统(为了改善高空性能,在进气系统内常装有增压器,其功用是增大进气压力)、燃油系统、点火系统(主要包括高电压磁电机、输电线、火花塞)、起动系统(一般为电动起动机)、散热系统和润滑系统等。
冲压喷气发动机
冲压喷气发动机是一种利用迎面气流进入发动机后减速,使空气提高静压的一种空气喷气发动机。它通常由进气道(又称扩压器)、燃烧室、推进喷管三部组成。冲压发动机没有压气机(也就不需要燃气涡轮),所以又称为不带压气机的空气喷气发动机。
这种发动机压缩空气的方法,是靠飞行器高速飞行时的相对气流进入发动机进气道中减速,将动能转变成压力能(例如进气速度为3倍音速时,理论上可使空气压力提高37倍)。冲压发动机的工作时,高速气流迎面向发动机吹来,在进气道内扩张减速,气压和温度升高后进入燃烧室与燃油(一般为煤油)混合燃烧,将温度提高到℃甚至更高,高温燃气随后经推进喷管膨胀加速,由喷口高速排出而产生推力。冲压发动机的推力与进气速度有关,如进气速度为3倍音速时,在地面产生的静推力可以超过2OO千牛。
冲压发动机的构造简单、重量轻、推重比大、成本低。但因没有压气机,不能在静止的条件下起动,所以不宜作为普通飞机的动力装置,而常与别的发动机配合使用,成为组合式动力装置。如冲压发动机与火箭发动机组合,冲压发动机与涡喷发动机或涡扇发动机组合等。安装组合式动力装置的飞行器,在起飞时开动火箭发动机、涡喷或涡扇发动机,待飞行速度足够使冲压发动机正常工作的时,再使用冲压发动机而关闭与之配合工作的发动机;在着陆阶段,当飞行器的飞行速度降低至冲压发动机不能正常工作时,又重新起动与之配合的发动机。如果冲压发动机作为飞行器的动力装置单独使用时,则这种飞行器必须由其他飞行器携带至空中并具有一定速度时,才能将冲压发动机起动后投放。冲压发动机或组合式冲压发动机一般用于导弹和超音速或亚音速靶机上。按应用范围划分,冲压发动机分为亚音速、超音速、高超音速三类。
一、亚音速冲压发动机
亚音速冲压发动机使用扩散形进气道和收敛形喷管,以航空煤油为燃料。飞行时增压比不超过 1.89,飞行马赫数小于 O.5时一般不能正常工作。亚音速冲压发动机用在亚音速航空器上,如亚音速靶机。
二、超音速冲压发动机
超音速冲压发动机采用超音速进气道(燃烧室入口为亚音速气流)和收敛形或收敛扩散形喷管,用航空煤油或烃类燃料。超音速冲压发动机的推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹(一般与固体火箭发动机相配合)。
三、高超音速冲压发动机
这种发动机燃烧在超音速下进行,使用碳氢燃料或液氢燃料,飞行马赫数高达5~16,目前高超音速冲压发动机正处于研制之中。 由于超音速冲压发动机的燃烧室入口为亚音速气流,也有将前两类发动机统称为亚音速冲压发动机,而将第三种发动机称为超音速冲压发动机。
脉动喷气发动机
脉动喷气发动机是喷气发动机的一种,可用于靶机,导弹或航空模型上。德国纳粹在第二次世界大战的后期,曾用它来推动V-1导弹,轰炸过伦敦。这种发动机的结构如图所示,它的前部装有单向活门,之后是含有燃油喷嘴和火花塞的燃烧室,最后是特殊设计的长长的尾喷管。
脉动喷气发动机工作时,首先把压缩空气打入单向活门,或使发动机在空中运动,这时便有气流进入燃烧室,然后油咀喷油,火花塞点火燃烧。这时长尾喷管在燃气喷出后,由于燃气流的惯性作用,虽然燃烧室内的压强同外面大气的压强相等,仍会继续向外喷,所以在燃烧室内造成空气稀薄的现象,使压强显著降低到小于大气压,于是空气再次打开单向活门流入燃烧室,喷油点火燃烧,开始第二个循环。这样周而复始,发动机便可不断地工作了。这种发动机由进气到燃烧、排气的循环过程进行得很快,一秒钟大约可达40~50次。
脉动式发动机在原地可以起动,构造简单,重量轻,造价便宜。这些都是它的优点。但它只适于低速飞行(速度极限约为每小时64O~8O0公里),飞行高度也有限,单向活门的工作寿命短,加上振动剧烈,燃油消耗率大等缺点,使得它的应用受到限制。
火箭发动机
火箭发动机是我国劳动人民首先创造出来的。早在唐代初年(约在七世纪)火药就出现了,南宋时代火药用来制造烟火,其中包括“起花”。大约在十三世纪制成火箭。我国古代制造的火箭和起花所用的是黑色火药。它们的工作原理和现代的固体燃料火箭是一样的。
同空气喷气发动机相比较,火箭发动机的最大特点是:它自身既带燃料,又带氧化剂,靠氧化剂来助燃,不需要从周围的大气层中汲取氧气。所以它不但能在大气层内,也可在大气层之外的宇宙真空中工作。这是任何空气喷气发动机都做不到的。目前发射的人造卫星、 月球飞船以及各种宇宙飞行器所用的推进装置,都是火箭发动机。
现代火箭发动机主要分固体推进剂和液体推进剂发动机。所谓“推进剂”就是燃料(燃烧剂)加氧化剂的合称。
一、固体火箭发动机
固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。
固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受25O0~35O0度的高温和102~2&107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。
点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。
喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。
药柱燃烧完毕,发动机便停止工作。
固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在25O~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。
固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。
二、液体火箭发动机
液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。
液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(25O0一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达2O0大气压(约20OMPa)、温度300O~400O℃,故需要冷却。
推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。
发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。
液体火箭发动机的优点是比冲高(25O~5OO秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。
三、其他能源的火箭发动机
(一)电火箭发动机
电火箭发动机是利用电能加速工质,形成高速射流而产生推力的火箭发动机。与化学火箭发动机不同,这种发动机的能源和工质是分开的。电能由飞行器提供,一般由太阳能、核能、化学能经转换装置得到。工质有氢、氮、氩、汞、氨等气体。
电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器组成。电源和电源交换器供给电能;电源调节器的功用是按预定程序起动发动机,并不断调整电推力器的各种参数,使发动机始终处于规定的工作状态;工质供应系统则是贮存工质和输送工质;电推力器的作用是将电能转换成工质的动能,使其产生高速喷气流而产生推力。
按加速工质的方式不同,电火箭发动机有电热火箭发动机、静电火箭发动机和电磁火箭发动机的三种类型。电热火箭发动机利用电能加热(电阻加热或电弧加热)工质(氢、胺、肼等),使其气化;经喷管膨胀加速后,由喷口排出而产生推力。静电火箭发动机的工质(汞、铯、氢等)从贮箱输入电离室被电离成离子,然后在电极的静电场作用下加速成高速离子流而产生推力。电磁火箭发动机是利用电磁场加速被电离工质而产生射流,形成推力。电火箭发动机具有极高的比冲(70O~250O秒)、极长的寿命(可重复起动上万次、累计工作可达上万小时)。但产生的推力小于10ON。这种发动机仅适用于航天器的姿态控制、位置保持等。
(二)核火箭发动机
核火箭发动机用核燃料作能源,用液氢、液氦、液氨等作工质。核火箭发动机由装在推力室中的核反应堆、冷却喷管、工质输送系统和控制系统等组成。在核反应堆中,核能转变成热能以加热工质,被加热的工质经喷管膨胀加速后,以O米/秒的速度从喷口排出而产生推力。核火箭发动机的比冲高(250~1000秒)寿命长,但技术复杂,只适用于长期工作的航天器。这种发动机由于核辐射防护、排气污染、反应堆控制,以及高效热能交换器的设计等问题未能解决,至今仍处于试验之中。此外,太阳加热式和光子火箭发动机尚处于理论探索阶段。
涡轮喷气发动机
在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。
到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。
问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。
喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依靠尾部喷出火药气体的反作用力飞上天空的。
早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。
现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。
空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。
进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。
从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。
从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。
一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。(下图)
随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。
喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流。
涡轮风扇发动机
自从惠特尔发明了第一台涡轮喷气发动机以后,涡轮喷气发动机很快便以其强大的动力、优异的高速性能取代了活塞式发动机,成为战斗机的首选动力装置,并开始在其他飞机中开始得到应用。
但是,随着喷气技术的发展,涡轮喷气发动机的缺点也越来越突出,那就是在低速下耗油量大,效率较低,使飞机的航程变得很短。尽管这对于执行防空任务的高速战斗机还并不十分严重,但若用在对经济性有严格要求的亚音速民用运输机上却是不可接受的。
要提高喷气发动机的效率,首先要知道什么式发动机的效率。发动机的效率实际上包括两个部分,即热效率和推进效率(详细解释见后边的帖子)。为提高热效率,一般来讲需要提高燃气在涡轮前的温度和压气机的增压比,但在飞机的飞行速度不变的情况下,提高涡轮前温度将会使喷气发动机的排气速度增加,导致在空气中损失的动能增加,这样又降低了推进效率。由于热效率和推进效率对发动机循环参数矛盾的要求,致使涡轮喷气发动机的总效率难以得到较大的提升。
那么,如何才能同时提高喷气发动机的热效率和推进效率,也就是怎样才能既提高涡轮前温度又至少不增加排气速度呢?答案就是采用涡轮风扇发动机。这种发动机在涡轮喷气发动机的的基础上增加了几级涡轮,并由这些涡轮带动一排或几排风扇,风扇后的气流分为两部分,一部分进入压气机(内涵道),另一部分则不经过燃烧,直接排到空气中(外涵道)。由于涡轮风扇发动机一部分的燃气能量被用来带动前端的风扇,因此降低了排气速度,提高了推进效率,而且,如果为提高热效率而提高涡轮前温度后,可以通过调整涡轮结构参数和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,就不会增加排气速度。这样,对于涡轮风扇发动机来讲,热效率和推进效率不再矛盾,只要结构和材料允许,提高涡轮前温度总是有利的。
目前航空用涡轮风扇发动机主要分两类,即不加力式涡轮风扇发动机和加力式涡轮风扇发动机。前者主要用于高亚音速运输机,后者主要用于歼击机,由于用途不同,这两类发动机的结构参数也大不相同。
不加力式涡轮风扇发动机不仅涡轮前温度较高,而且风扇直径较大,涵道比可达8以上,这种发动机的经济性优于涡轮喷气发动机,而可用飞行速度又比活塞式发动机高,在现代大型干线客机、军用运输机等最大速度为M0.9左右的飞机中得到广泛的应用。根据热机的原理,当发动机的功率一定时,参加推进的工质越多,所获得的推力就越大,不加力式涡轮风扇发动机由于风扇直径大,空气流量就大,因而推力也较大。同时由于排气速度较低,这种发动机的噪音也较小。
涡轮风扇发动机的涵道比
在结构上,通常将喷气发动机的压气机、燃烧室和涡轮叫做核心发动机或燃气发生器。
当空气流经涡轮风扇发动机的前端风扇后,分为两个部分:一部分气流进入燃气发生器,叫做内涵道;另一部分从燃气发生器的外围通过,称为外涵道。外涵道与内涵道的流量之比,叫做涵道比,也叫流量比。
加力式涡轮风扇发动机
加力式涡轮风扇发动机在飞机巡航中是不开加力的,这时它相当于一台不加力式涡轮风扇发动机,但为了追求高的推重比和减小阻力,这种发动机的涵道比一般在1.0以下。在高速飞行时,发动机的加力打开,外涵道的空气和涡轮后的燃气一同进入加力燃烧室喷油后再次燃烧,使推力可大幅度增加,甚至超过了加力式涡轮喷气发动机,而且随着速度的增加,这种发动机的加力比还会上升,并且耗油率有所下降。加力式涡轮风扇发动机由于具有这种低速时较油耗低,开加力时推重比大的特点,目前已在新一代歼击机上得到广泛应用。
喷气发动机的热效率
喷气发动机是热机的一种。
热机是连续不断地将热能转换为机械能的动力装置。热机的热效率为输出的机械能与输入的热能的比值。根据热力学第二定律,这个比值应小于1。
获得机械能的过程是通过气体膨胀做功,但是,膨胀是有限度的,必须在膨胀后使其恢复到初始状态,才能进行下一次做功,以获得连续的机械能输出。右图为一理想热机循环,称为卡诺循环。纵坐标为气体温度,横坐标为气体的熵。A-B为定温加热膨胀过程,加入的热量q1 全部对外做功;C-D为定温放热收缩过程,外界做功全部转化为热量q2 放出,B-C和D-A过程相互抵消。
因此,一个循环的做功输出:
W= q1 -q2
即为阴影部分的面积。那么,卡诺循环热机的热效率:
n=W/ q1=1-T2/T1
可见,要提高卡诺热机的热效率,应该提高高温热源的温度T1,或降低低温热源的温度T2。
对于航空喷气发动机来讲,虽然其循环并非严格卡诺循环,但这一原则同样有效。因为发动机的燃气直接排到空气中,低温热源温度很难降低,只有提高高温热源的温度,即提高燃气从燃烧室进入到涡轮前的温度,这样才能提高发动机的热效率。
喷气发动机既是发动机又是推进器,因此就存在一个推进效率的问题。所谓推进效率,就是指发动机传递给飞行器的推进功率与其产生的总机械功率之比,即:
推进效率 = 传给飞行器的推进功率 / 进排气的机械能之差
根据计算可知,发动机的推进效率仅与进气速度(等于飞机飞行速度)和排气速度有关:
推进效率= 2/(1+排气速度/进气速度)
由此可见,喷气发动机的推进效率由排气速度和飞行速度的比值决定,比值越大,推进效率越低。
涡轮螺旋桨发动机
一般来说,现代不加力涡轮风扇发动机的涵道比是有着不断加大的趋势的。因为对于涡轮风扇发动机来说,若飞行速度一定,要提高飞机的推进效率,也就是要降低排气速度和飞行速度的差值,需要加大涵道比;而同时随着发动机材料和结构工艺的提高,许用的涡轮前温度也不断提高,这也要求相应地增大涵道比。对于一架低速(500~600km/h)的飞机来说,在一定的涡轮前温度下,其适当的涵道比应为50以上,这显然是发动机的结构所无法承受的。
为了提高效率,人们索性便抛去了风扇的外涵壳体,用螺旋桨代替了风扇,便形成了涡轮螺旋桨发动机,简称涡桨发动机。涡轮螺旋桨发动机由螺旋桨和燃气发生器组成,螺旋桨由涡轮带动。由于螺旋桨的直径较大,转速要远比涡轮低,只有大约1000转/分,为使涡轮和螺旋桨都工作在正常的范围内,需要在它们之间安装一个减速器,将涡轮转速降至十分之一左右后,才可驱动螺旋桨。这种减速器的负荷重,结构复杂,制造成本高,它的重量一般相当于压气机和涡轮的总重,作为发动机整体的一个部件,减速器在设计、制造和试验中占有相当重要的地位。
涡轮螺旋桨发动机的螺旋桨后的空气流就相当于涡轮风扇发动机的外涵道,由于螺旋桨的直径比发动机大很多,气流量也远大于内涵道,因此这种发动机实际上相当于一台超大涵道比的涡轮风扇发动机。
尽管工作原理近似,但涡轮螺旋桨发动机和涡轮风扇发动机在产生动力方面却有着很大的不同,涡轮螺旋桨发动机的主要功率输出方式为螺旋桨的轴功率,而尾喷管喷出的燃气推力极小,只占总推力的5%左右,为了驱动大功率的螺旋桨,涡轮级数也比涡轮风扇发动机要多,一般为2~6级。
同活塞式发动机+螺旋桨相比,涡轮螺旋桨发动机有很多优点。首先,它的功率大,功重比(功率/重量)也大,最大功率可超过10000马力,功重比为4以上;而活塞式发动机最大不过三四千马力,功重比2左右。其次,由于减少了运动部件,尤其是没有做往复运动的活塞,涡轮螺旋桨发动机运转稳定性好,噪音小,工作寿命长,维修费用也较低。而且,由于核心部分采用燃气发生器,涡轮螺旋桨发动机的适用高度和速度范围都要比活塞式发动机高很多。在耗油率方面,二者相差不多,但涡轮螺旋桨发动机所使用的煤油要比活塞式发动机的汽油便宜。
由于涵道比大,涡轮螺旋桨发动机在低速下效率要高于涡轮风扇发动机,但受到螺旋桨效率的影响,它的适用速度不能太高,一般要小于900km/h。目前在中低速飞机或对低速性能有严格要求的巡逻、反潜或灭火等类型飞机中的到广泛应用。
涡轮轴发动机
在带有压气机的涡轮发动机这一类型中,涡轮轴发动机出现得较晚,但已在直升机和垂直/短距起落飞机上得到了广泛的应用。
涡轮轴发动机于1951年12月开始装在直升机上,作第一次飞行。那时它属于涡轮螺桨发动机,并没有自成体系。以后随着直升机在军事和国民经济上使用越来越普遍,涡轮轴发动机才获得独立的地位。
在工作和构造上,涡轮轴发动机同涡轮螺桨发动机根相近。它们都是由涡轮风扇发动机的原理演变而来,只不过后者将风扇变成了螺旋桨,而前者将风扇变成了直升机的旋翼。除此之外,涡轮轴发动机也有自己的特点:它一般装有自由涡轮(即不带动压气机,专为输出功率用的涡轮),而且主要用在直升机和垂直/短距起落飞机上。
在构造上,涡轮轴发动机也有进气道、压气机、燃烧室和尾喷管等燃气发生器基本构造,但它一般都装有自由涡轮,如图所示,前面的是两级普通涡轮,它带动压气机,维持发动机工作,后面的二级是自由涡轮,燃气在其中作功,通过传动轴专门用来带动直升机的旋翼旋转,使它升空飞行。此外,从涡轮流出来的燃气,经过尾喷管喷出,可产生一定的推力,由于喷速不大,这种推力很小,如折合为功率,大约仅占总功率的十分之一左右。有时喷速过小,甚至不产生什么推力。为了合理地安排直升机的结构,涡轮轴发动机的喷口,可以向上,向下或向两侧,不象涡轮喷气发动机那样非向后不可。这有利于直升机设计时的总体安排。
涡轮轴发动机
~是用于直升机的,它与旋翼配合,构成了直升机的动力装置。按照涡轮风扇发动机的理论,从理论上讲,旋翼的直径愈大愈好。同样的核心发动机,产生同样的循环功率,所配合的旋翼直径愈大,则在旋翼上所产生的升力愈大。事实上,由于在能量转换过程中有损失,旋翼也不可能制成无限大,所以,旋翼的直径是有限制的。——般说,通过旋翼的空气流量是通过涡轮轴发动机的空气流量的500-1000倍。
同涡轮轴发动机和直升机常用的另一种动力装置——活塞发动机采相比,涡轮轴发动机的功率重量比要大得多,在2.5以上。而且就发动机所产生的功率来说,涡轮轴发动机也大得多,目前使用中的涡轮轴发动机所产生的功率,最高可达6000马力甚至10000马力,活塞发动则相差很远。在经济性上,涡轮轴发动机的耗油率略高于最好的活塞式发动机,但它所用的航空煤油要比前者所用的汽油便宜,这在一定程度上得到了弥补。 当然,涡轮轴发动机也有其不足之处。它制造比较困难,制造成本也较高。特别是由于旋翼的转速更低,它需要比涡轮螺旋桨发动机更重更大的减速齿轮系统,有时它的重量竟占发动机总重量一半以上。
螺桨风扇发动机
螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。
螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。
据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。
由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。
同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。
当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的气动设计也是目前研究的难点所在。
最后再来讲一下喷气发动机的推重比
喷气发动机的推力和发动机的净重之比,称为发动机的推重比。
推重比是一个综合性的性能指标,它不仅体现喷气发动机在气动热力循环方面的水平,也体现了结构方面的设计水平。目前,高性能的加力式涡轮风扇发动机的推重比可达8~10.
网易论坛,天天相伴
中国白领丽人群
积分: 187444
发帖: 7537 篇
在线时长: 373 小时
该图片仅限百度用户交流使用
如果没这个,估计能弄个顶精
网易论坛,天天相伴
我只在乎你在乎不在乎我的在乎和我的不在乎,你的在乎和你的不在乎我一定在乎的非常在乎。你是否在乎你在乎的人在乎不在乎你的在乎和你的不在乎.你是否在乎在乎你的人在不在乎你的在乎和你的不在乎?
积分: 3571
发帖: 1793 篇
在线时长: 126 小时
网易论坛,天天相伴
告诉我:在无人往来的渡口...你能等待多久??
在没有希望的地方...你能守候多久???
发帖: 634 篇
在线时长: 30 小时
不错啊,信息很全
网易论坛,天天相伴
比大地宽阔的是海洋,比海洋宽阔的是天空,比天空宽阔的是心胸
积分: 5094
发帖: 4785 篇
在线时长: 608 小时
长见识了,这贴得顶!!
网易论坛,天天相伴
倭寇未灭心未平,孤剑床头铿有生!
积分: 3807
发帖: 1375 篇
在线时长: 12 小时
当老板很多年,走遍世界各地最羡慕的就是别人不带翻译、自己能说英语,可让我去学实在是没时间,也没信心。
一个偶然的机会,我接触了快克英语,居然没花任何正经时间,就在两个月里白捡了一口流畅的English,绝对像做梦一样,
网易论坛,天天相伴
快克英语口语中心拥有丰富资源的下载中心,这是中国最大的免费英语资料下载基地之一。集国内外考试辅导和中外优秀影视作品欣赏为一体,重点突出英语口语、听力、写作、阅读基础能力的积累,对外语学习爱好者提供了宝贵的课后辅导资源, 010-
发帖: 191 篇
在线时长: 13 小时
每30秒自动保存一次内容
我眼中的似水流年作品征集
24小时热帖榜
下次自动登录

我要回帖

更多关于 火箭飞行速度 的文章

 

随机推荐