求5000字基于单片机的外文文献外文文献及汉语翻译

求一篇与单片机温度控制相关的英文资料,翻译成中文大概5000字左右有翻译更好_作业帮
拍照搜题,秒出答案
求一篇与单片机温度控制相关的英文资料,翻译成中文大概5000字左右有翻译更好
求一篇与单片机温度控制相关的英文资料,翻译成中文大概5000字左右有翻译更好
我偶的百度文库里上传了不少有关单片机和温控的英文资料,而且带翻译你可以自己去挑选下!文档分类:
在线文档经过高度压缩,下载原文更清晰。
淘豆网网友近日为您收集整理了关于基于单片机智能充电器的外文文献翻译--(英文+中文)的文档,希望对您的工作和学习有所帮助。以下是文档介绍:基于单片机智能充电器的外文文献翻译--(英文+中文) 1译文电池充电器集成电路的改进跟上移动手机功能快速增长的速度在全球无线连接的时代,几乎没有什么比让一个智能手机或移动互联网设备保持带电更重要了。便携式和手持设备功能的扩展性不断提高成为电池充电器集成电路设计者的一个重大挑战。高分辨率的屏幕和更大的储存能力并加上新的功能赋予电池,这就需要对电池充电器的技术要求,不仅要更有效率,同时要具有配电管理的能力。通过优化电源消耗来延长电池的寿命是掌上型电源管理的驱动力。但是当把手持的设备插入墙上,期望对他们进行充电时有有效地变化。最新一代采用高效率开关设计的充电器会代替传统的线性充电器。今天的客户仍旧需求更短的充电周期对其电池充电。相比传统的线性充电器,采用开关充电器的好处,除了效率高之外,还有一个很大的优点是通过电源提供能够促进充电电流。特别重要的是,当供电结束时 USB 接口处的电流可以实现被限制在小于 500mA。更高的充电电流等于充电周期更短,这就满足了客户的期望。当今有两种被大多数手持设备使用的电池充电器---线性充电器和开关充电器。线性充电器有一段较长的历史。他们通常提供了相对高效,简单的方式对便携设备充电,同时产生噪音极小且不需要很多的外部元器件。但是,随着便携式设备变得更加复杂和添加新的功能层,他们就需要更大的电池容量。由于功能损耗,线性充电器呈现出不足,这很容易知道,假如用户想要对设备充电,且在同一时间又使用。同时使用设备和对其进行充电产生的热量会损坏系统或电池。这将会导致不好的结果。另一种选择是开关充电器,或者是开关模式电池充电器集成电路,它可以提供更高的电流水平,但却需要尽可能少的功率。历史上,这些类型的集成电路经常存在一些噪音的问题。此外,一些早期的几代开关模式的设备需要一些外部元件。2然而,开关模式的电池拓扑结构的好处是显而易见的。它们包括提高效率和降低功耗,以及快速的充电周期。这些器件也都能够由高的输入电压进行充电,这就可以允许使用较低成本无管制的适配器。他们可以从电流限制的能源中增加充电电流。来自开关充电器的噪音通常是在轻负荷运行时产生的,特别是在预处理时。随着噪声的减少,很多开关充电器进入了著名的脉冲跳跃操作。在脉冲跳跃时,脉宽调制的频率的变化是异步的。目前已开发出发达的电池充电器的集成电路使用一个开关式的充电器供应高的充电电流以最小的热量影响到系统使,然后在低电流充电模式下转换成为线性充电器,以减少噪音。这种脉宽调制开关模式充电器带有线性模式类型是一个很好的发展,提供了高效率的恒流(快速充电)的速度。开关式充电器通过脉宽调制开关调节器来控制很大的恒定的稳压电流充电(高达 2A)。在电池预处理和锥形恒压充电模式将要结束时,它会自动转换到线性模式,从而降低了噪音,同时开关模式加速充电。一旦充电的电流水平低于300mA,则会完全的变成线性模式,由开关转换器产生的噪声就被消除。但现在有进一步的发展。例如,一个新的手持设备的理想解决方案是单节锂/聚合物电池,它能提供高达 1A 的充电电流和先进的充电系统监控显示功能USB 兼 100mA/500mA 充电电流设置有利的是可编程的预充电和快速充电。许多产品还包括电池温度监测,以确保安全充电。如 Intersil 的公司是新一代充电器芯片开发的领头羊。这些所有的集成解决方案能够满足紧凑型应用,提供更高功率应用的充电控制器。现在的充电电压精度达到 0.5 个百分点,比起仅仅在几年之前,那时准确率为 1 个百分点就被认为是很好的的时候,这已经说明是有了进一步的发展。开关频率高达 3 MHz,现在新的交换充电器提供高达 2A 的充电电流,如 ISL9220,这是 1 和 2 细胞的锂离子电池应用的理想选择。此外,新设计限制泄漏- 当没有附加输入功率时,现在典型的泄漏电流小于 0.5uA。在更小和更小的封装上这些改进也已成为可,如 4 ×4 毫米 QFNs 或 2 x2毫米的 CSPS,这在空间受限制的手机设备上节省了资源。最新的电池充电器芯片还能够监视输入电压,电池电压,充电电流。当这三个参数中的任何一个超出特定的限制,该集成电路将关闭一个内置的 N 沟道3MOSFET,以至于从充电系统移除电量给电池。这种灵活的效率的改进,就是现在这些重要的设备,这对持续增长和移动特征设置扩展,手持产品扩展是至关重要的。微型计算机 8051 系统太阳能电池供电与双充电电池之设计与建构单片机系统电流控制和信息应用领域正变得越来越普及。然而,由于其电池能量的限制,如果单个可充电电池提供电量,那么这些系统有一个非常受限制的操作时间或充电周期。我们为采用双充电电池是由太阳能电池供电微机 8051 系统的软件和硬件提出了设计和实施。从为双电池系统随机充电和放电过程中排队模型可行性分析,由于天气条件和用户操作行为的随机性特征,我们可以证实,此模型的平均运行时间可远远长于由单个可充电电池供电的平均运行时间。我们设计的实验结果也表明和我们的模型大致相同。随着三分之二的利用率,我们可以得到一个平均运行时间的四倍在理论结果一样长,并且三分之二实验结果比用单一的可充电电池供电的时间长。此外,该技术的发展趋势表明,对于一个典型的微机系统的用电率正在下降,为典型的太阳能电池发电效率正在增加。因此,太阳能电池作为通过用双充电电池为微型计算机 8051 系统充电的充电电池在不久的将来是可行的。在过去的几年里,微型计算机系统的设计研究人员使用不同水平的低功率技术进行研究工作。就系统、电路和设备节能方面来说,结果表明,从 1992 至1997 年每年一台微机电脑的平均功耗减少超过 20%,从 1998 年至 2001 年每年一台微机电脑的平均功耗减少到 10%。功耗的降低是很重要的,这是因为它有潜能延长便携式设备再次充电的周期。电池需要再次充电前的运行时间越长,则对移动的用户操作便携式微机系统越方便。最终,一个单片机系统的功耗将足够小到可以提供或通过其他的能源再次充电。其中一个能源是机械振动。在其他的能源之中,我们先前提到的太阳能电池可作为能量供应能源。尽管当前的 MC -硅太阳能电池发电效率还不够高,但是他们的工作效率从 1990 年到 1997 年由 14.2%上升到了 16.8%。这种改善可以4减少由一个微机系统提供的电源充电和放电速率之间的差距,因此在一定的操作时间能量的衰竭的概率每年是减少的。为了延长电池在再次充电前的使用时间,我们在这篇文章中提出了一个8051 单片机带有双电池通过太阳能充电系统的软件和硬件模块。在其设计和实现的基础上,这篇文章也提出了估计电量用尽的可能性与依靠太阳能电池的发电效率和微型机的用电率进行实验测量运行时间。此外,由于充电和放电期间的存在重叠部分,如果充电和放电的速度之比为三分之二,那么,电池使用时间可能会被延长相比一个可充电的电池的使用时间的四倍。剩下的部分安排如下。在第二部分中,相对于微机的能量损耗和太阳能电池的发电效率技术的发展趋势进行了讨论。在第三部分中,单片机的两个可充电电池的随机充电和放电的行为排队模型准备好。此外,在单片机系统的双充电电池的可行性估计已给出。在第四部分和第五部分,给出了本系统的软件和硬件模块的设计和实现。在第六部分中,本系统的实验结果已给出。最后一个部分给出了结论。7. 结论我们已经提出了用太阳能电池充电的双电池供电的 8051 单片机系统的设计与实现。所使用的硬件组件是非常普遍且低成本的。控制程序的设计采用了汇编语言常见的种类。该实验系统已显示出非常稳定的运行状态。从我们对理论和实验结果的观察,我们得出的结论是,这种双电池的设计有能力延长这样一个微型电脑平均运行时间的两倍。对于我们的设计中三分之二的利用率,从理论结果上说,我们可以得到四倍的单电池设计的平均运行时间,从实验结果上说,我们可以得到 3.5 倍的平均运行时间。理论结果与实验结果之间的差异是在电池充电过程中出现错误的结果。此外,当我们的系统在强阳光下运行时,它可以不断地工作,并且没有电池耗尽,这是因为由太阳能电池发电的电量要比 8051 系统消耗的能量大的多。5Improvements in Battery Charger ICs Keep Pacewith Rapid Increases in Mobile HandsetCapabilitiesIn the era of global wireless connectivity, almost nothing is moreimportant than keeping a smart phone or mobile
device charged.Expanding features on the constantly improving portable and handhelddevice create a major challenge for designers of battery charger ICs. Highresolution screens and larger bine with new capabilities totax the battery, requiring battery charger technology that is not onlymore efficient but also capable of managing power distribution.Optimizing power consumption to prolong battery life has always been adriving force in handheld power management. However what is changing arethe efficiency expectations for charging handheld devices when they areplugged into the wall. The latest generations of device designs are usinghigh-efficiency switching chargers in place of traditional linearchargers. Customers today continue to demand shorter charge cycles whencharging their battery. Beside higher efficiency with respect to theconventional linear chargers, one of the great advantages of usingswitching chargers solution is the capability to boost the charge currentfrom what supplied by the source. This is especially important whenpowering off of a USB port where the current available might be limitedto less than 500mA. Higher charge currents equate to shorter charge cyclesthus satisfying customer expectations.There are two kinds of battery chargers used in most handhelds now –linear chargers and switching devices. Linear chargers have a longerhistory. They have typically provided a relatively efficient, simple wayto charge portable devices, creating minimal noise without many ponents. But as portable devices e plex and add layersof new features, they need higher battery capacity. Linear chargerspresent liabilities due to power dissipation, which e clear if a userwants to charge a device while using at the same time. The heat generatedwhile simultaneously using and charging can damage the system or battery.Not a good e.The alternative is a switching device, or switch mode battery charger IC,that can deliver higher current levels to a battery while requiring aslittle power as possible. Historically, there have been some noise issueswith these kinds of ICs. In addition, some early generations of switch6mode devices have required several ponents.However, the benefits of the switched mode battery topology are clear.They include higher efficiency and lower power dissipation, along withfast charging cycles. These devices also are capable of charging fromhigher input voltages, which allows the use of lower cost unregulatedadapters. They can increase the charging current from current restrictedsources.The noise from switching chargers es during light loadoperation, particularly during preconditioning. As it decreases, manyswitching chargers move into an operation known as pulse skipping. Inpulse skipping, the PWM frequency changes asynchronously. There have beenbattery charger ICs developed that supply high charge current with minimalthermal impact to the system using a switching charger, then switch intoa linear charger during low current charging modes to minimize noise. Thistype of PWM switch mode charger with a linear mode has been a gooddevelopment, providing high efficiency at the full constant current (fastcharge) rate. The switching charger controls large constant currentcharge (up to 2A) with a PWM switching regulator. It automatically movesto linear mode while the battery is preconditioning and near the end ofconstant voltage taper charge mode, which lowers the noise while theswitch mode speeds up charging. Once the charge current level dips below300 mA, the linear mode kicks pletely and noise generated by theswitching converter is eliminated.But now there are further advances. For example, an ideal solution fornew handhelds is plete charger for single cell Li+/ Polymer batterieswith up to 1A charge current and advanced indication capabilities for fullcharge system monitoring. pliant 100mA/500mA charge currentsettings are beneficial as are programmable pre-charge and fast charge.Many products also include battery temperature monitoring, which ensuressafe panies such as Intersil are leading the development effort for newgenerations of charger ICs. These fully integrated solutions pact applications and provide charge controllers for higher powerapplications. Charge voltage accuracy is now at 0.5 percent, animprovement over just a few years ago, when an accuracy rating of 1 percentwas considered good. Switching frequencies are up to 3 MHz and newswitching chargers now provide up to 2A charge current, with one recentexample being the ISL9220, which is suitable for both 1 and 2 cells LiIon applications.7In addition, new designs restrict leakage -- there is no less than 0.5uAtypical leakage current off the battery when no input power is attached.These improvements also have e available in smaller and smallerpackages, such as 4 x 4mm QFNs or 2 x 2mm CSPs, which save real estatein space-constrained handheld equipment.The latest battery charger ICs also are able to monitor the input voltage,the battery voltage, and the charge current. When any of the threeparameters exceeds specific limits, the IC turns off an internal N-channelMOSFET to remove the power from the charging system to the battery. Thiskind of flexible efficiency is another of the improvements now availablein these important devices, which are vital to the continuing growth andfeature set expansion of mobile, handheld products.【作者】Marino, G Schmitz, Tamara【刊名】ponent News【出版日期】2010【卷号】Vol.54【期号】No.1【页码】16DESIGN AND IMPLEMENTATION OF PUTER 8051 SYSTEM POWERED BYDUAL BATTERIES CHARGED BY SOLAR CELLSAbstractSingle-chip puter systems are ing increasingly popular incurrent control and information applications. However, due to theirbattery energy limitations, these systems have a very restrictedoperation time or recharge cycle if a single rechargeable battery suppliestheir power. We propose a design and implementation for the software andhardware of a puter 8051 system powered by a dual rechargeablebattery that is charged by solar cells. From a feasibility analysis ofthe queueing model for the stochastic charging and discharging processof the dual battery system, due to the random characteristics of weatherconditions and users' operational behavior, we confirm that the averageoperation time for this model can be much longer than that of a singlerechargeable battery power supply. The experimental results of our designalso show approximately the same results as our model. With a two-thirdsutilization ratio, we can obtain an average operation time four times aslong in theoretical results, and three and half times as long in8experimental results than with a single rechargeable battery power supply.In addition, the technology trend shows that the power consumption ratefor a typical puter system is decreasing and the power generationefficiency for typical solar cells is increasing. Hence, solar cells asthe power charging sources for a puter 8051 system supplied bya dual rechargeable battery can be feasible in the near future.Over the past few years, puter system design researchers have beenworking with different levels of low-power technology. In terms of system,circuits, and device power saving, the results show that every year from1992 to 1997 the average power consumption of a puterdecreased more than 20%,and from 1998 to 2001 it decreased by 10%.Reducingpower consumption is important because of its potential to extend therecharge period of portable information applications. The longer thebattery operation time before a recharge is needed, the more convenientit is for mobile users to operate a portable puter system.Eventually, the power consumption of a single-chip puter systemwill be small enough to be supplied or recharged by other power sources.One of the proposed power sources is mechanical vibration. Among others,we previously proposed solar cells that can be used as power supply sources.Although current mc-Si solar cell power generation efficiency is not highenough, their efficiency increased from 14.2% to 16.8%from 1990 to1997.This improvement can reduce the gap between the charging anddischarging rate of the power supply of a puter system, so theprobability of power exhaustion within a certain operational time isreduced each year.To prolong the battery operation time before recharging, in this articlewe present the software and hardware module for a single-puter 8051 system with a dual battery charged by solar cells.Based on its design and implementation, this work also presents theestimation for power exhaustion probability and the experimentalmeasurement for operation time that depends on the power generationefficiency of solar cells and the power consumption rate of puter. In addition, due to the overlapping of the charging andthe discharging period, if the ratio between the charging and dischargingrate is two thirds, then the operation time can potentially be prolongedfour times parison with a single rechargeable battery.The rest of this anized as follows. In Section 2, the technologytrends with respect to the power consumption of a puter and thepower generation efficiency of solar cells are discussed. In Section 3,the queueing model for the stochastic charging and discharging behaviorfor the dual rechargeable battery in a single-chip puter system9is presented. In addition, the feasibility estimation for the dualrechargeable battery in a single chip puter system is given. InSections 4 and 5, the design and implementation of the software andhardware modules for this system are provided. In Section 6, theexperimental results of this system are given. The last section presentsconclusions.7. ConclusionsWe have presented the design and implementation of a puter 8051system powered by dual batteries charged by solar cells. The ponents used are mon and are of low cost. The control programdesigned uses mon variety of assembly language. The experimentalsystem has shown a very stable operation. From our observation of thetheoretical and experimental results, we conclude that this dual-batterydesign has the potential to extend the average operation time of such puter by 200%. For a two-thirds utilization ratio in our design,we can gain four times the average operation time of a single-batterydesign from the theoretical results, and three and a half times the averageoperation time from experimental results. The difference between thetheoretical results and the experimental results is a result of error inthe battery-charging process. In addition, when our system operates instrong sunshine, it can work continually without battery exhaustionbecause the energy generation by the solar cells is greater than the energyconsumption of 8051 system.【作者】Y.-W. B C.-L. Chang【刊名】International Journal of Power & Energy Systems【出版日期】2002【卷号】Vol.22【期号】NO.3【页码】125-135播放器加载中,请稍候...
该用户其他文档
下载所得到的文件列表基于单片机智能充电器的外文文献翻译--(英文+中文).doc
文档介绍:
基于单片机智能充电器的外文文献翻译--(英文+中文) 1译文电池充电器集成电路的改进跟上移动手机功能快速增长的速度在全球无线连接的时代,几乎没有什么比让一个智能手机或移动互联网设备保持带电更重要了。便携式和手持设备功能的扩展性不断提高成为电池充电器集成电路设计者的一个重大挑战。高分辨率的屏幕和更大的储存能...
内容来自淘豆网转载请标明出处.单片机论文外文文献和中文翻译(有出处)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
&&¥10.00
&&¥10.00
喜欢此文档的还喜欢
单片机论文外文文献和中文翻译(有出处)
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢51单片机英文文献+中文翻译,5000字以上_百度知道
51单片机英文文献+中文翻译,5000字以上
要5000字以上的.com。我邮箱是shunzi0504@sina谁能给我发个51单片机英文文献+中文翻译。毕业设计用
无视给我发解压要密码的,无视字数不够等不符合我要求的。好的话我可以再追加100分
提问者采纳
给你发邮箱了。查收
提问者评价
采纳率100%
其他类似问题
为您推荐:
您可能关注的推广回答者:回答者:
51单片机的相关知识
其他4条回答
是要设计项目?
楼主,我也正在找呢,回头你找到了能给我发一份不?谢谢哈~~我没有您那么多的分啊~~我的邮箱
不知道。最好有中文,帮你翻译过来。
发你邮箱了
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁

我要回帖

更多关于 单片机外文文献 的文章

 

随机推荐