现在学量子力学视频以后有什么发展

注册 14-3-10
量子力学与人类神秘主义文化
&&量子力学
量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。
& &&&神秘主义文化
在一些中外中,被解释为“是一种宗教的”。认为“人同神或之间能够进行直接的精往,人借助这种交往就能领悟到世界的秘密”;是“泛指不从科学考察和,而是从不可言传的秘密途径得出结论的信仰或学说”;是“关于实在的最后真理只能从神秘经验或从非理性的神秘直觉得到的理论”。
[ 本帖最后由 丁井人 于 15-7-3 20:21 编辑 ]
15-7-3 20:15
注册 14-3-10
的来源有两种不同的说法:
1.“”( mysticism )一词出自动词 myein,即“闭上”,尤其是“闭上眼睛”。之所以要闭上眼睛,乃是出自对通过感官从现象世界获得真理、智慧感到失望。不过,并不像那样放弃对真理的追求,它仅仅主张闭上肉体的眼睛,同时却主张睁开心灵的眼睛,使心灵的眼睛不受现象世界的所干扰,从而返回自我,在心灵的静观中达到真理、智慧。因此,中对神秘主义的解释一般是“通过从返回到内心,在静观、沉思或者的心理状态中与神或者某种最高原则结合,或者消融在它之中”。
2.神秘主义(Occultism)“神秘主义”一词是从occultism(意为“隐藏或隐蔽”)派生而来的,其基本含义是指能够使人们获得更高的精神或心灵之力的各种教义和宗教仪式。神秘主义包括诸多理论和实践例如、、“”探寻、数灵论、、自然魔术、纲领、、和等。这许的神秘主义对已经产生影响,而且还在继续产生影响。神秘主义的基本信条就是世上存在着秘密的或隐藏的。能够理解并操作神秘的的人,必须接受过神秘知识的教育。这里,神秘的知识被认为是来自于原始古老的智慧,神秘的被认为可以用来和预言未来。
15-7-3 20:32
注册 14-3-10
量子力学创始人Max Karl Ernst Ludwig Planck,.―.
姓名:马克斯·普朗克 .职务:教授 德国物理学家,量子物理学的开创者和奠基人,1918年诺贝尔物理学奖的获得者.普朗克的伟大成就,就是创立了量子理论,这是物理学史上的一次巨大变革.从此结束了经典物理学一统天下的局面.。
15-7-3 20:47
注册 14-3-10
& &&&量子力学的创始人是谁量子力学是在旧量子论的基础上发展起来的.旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论.
德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论.
应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果.因此量子力学的建立大大促进了原子物理.固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界.量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算.因此量子力学在早期也称为波动力学或矩阵力学.量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论.在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论.
15-7-3 21:01
注册 14-3-10
中国量子力学的领军人物&&中国量子力学能称得上领军人物的恐怕只能是杨振宁和李政道了,这两个人是在量子力学的建立上做出了巨大贡献的,并双双因为他们对量子力学的贡献得到1957年的诺贝尔物理学奖,只可惜他们不是中国国籍。& && &&&现在来看,中国依然有两个人及其研究团队走在世界量子力学研究的前列。他们是:
&&薛其坤:中国科学院院士、清华大学物理系教授,世界上首次观测到量子反常霍尔效应。& &(2012年)
潘建伟:中国科学院院士、中国科学技术大学副校长、教授,国际上首次实验实现量子隐形传态及纠缠交换、终端开放的量子隐形传态、复合系统量子隐形传态、16公里自由空间量子隐形传态。首次实现三、四、五、六、八光子纠缠。首次实验验证GHZ定理。
& && &&&但他们的工作较杨振宁他们要逊色很多了。杨振宁他们是在建造量子力学这座大厦上出了大力的,是量子力学的那十几个创始人之一。而薛其坤和潘建伟是在大厦建成后帮着添砖加瓦。
15-7-3 21:12
注册 14-3-10
是一个复杂而又难解的谜题。她像一个神秘的少女,我们天天与她相见,却始终无法猜透她的内。今天,我们的现代文明,从电脑,电视,手机到,航天,,几乎没有哪个领域不依赖于量子论。但量子论究竟带给了我们什么?这个问题至今却依然难以回答。在观上,量子论带给了我们前所未有的冲击和震动,甚至改变了整个物理世界的基本思想。它的观念是如此地革命,乃至最不保守的都在里对它怀有深深的惧意。现代文明的繁盛是理性的胜利,而量子论无疑是理性的最高成就之一。但是它被赋予的力量太过强大,以致有史以来第一次,我们的理性在胜利中同时埋下了能够毁灭它自身的种子。以致量子论的奠基人之一(Niels Bohr)都要说:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”
&&掐指算来,量子论创立至今已经超过100年,但它的一些基本思想却仍然不为普通的大众所熟知。那么,就让我们再次回到那个伟大的年代,再次回顾一下那场史诗般壮丽的革命,再次去穿行于那之间,领略一下晕眩的感觉吧。我们的就要出发,当你感到恐惧或者震惊时,请务必抓紧舷边。但大家也要时刻记住,当年,物理史上最伟大的天才们也走过同样的航线,而他们的感觉,和我们是一模一样的。
15-7-3 22:02
注册 14-3-10
& &&&谈到量子力学感兴趣的人确实太少,但一谈鬼神很多人都能说上几段故事。
15-7-5 20:54
注册 14-3-10
量子力学也有很多动人的故事——我们的故事要从 1887 年的德国开始。位于莱茵河边的卡尔斯鲁厄是一座风景秀丽的城市,在它的城中心,矗立着著名的 18 世纪的宫殿。郁郁葱葱的森林和温暖的气候也使得这座小城成为了欧洲的一个旅游名胜。然而这些怡人的景色似乎没有分散海因里希. 鲁道夫. 赫兹 (Heinrich Rudolf Hertz) 的注意力:现在他正在卡尔斯鲁厄大学的一间实验室里专心致志地摆弄他的仪器。那时候,赫兹刚刚 30 岁,也许不会想到他将在科学史上成为和他的老师赫耳姆霍兹 (Hermann von Helmholtz) 一样鼎鼎有名的人物,科学史上成为和他的老师赫耳姆霍兹 (Hermann von Helmholtz) 一样鼎鼎有名的人物,是完完全全地倾注在他的那套装置上。赫兹的装置在今天看来是很简单的:它的主要部分是一个电火花发生器,有两个相隔很近的小铜球作为电容。赫兹全神贯注地注视着这两个相对而视的铜球,然后合上了电路开关。顿时,电的魔力开始在这个简单的系统里展现出来:无形的电流穿过装置里的感应线圈,并开始对铜球电容进行充电。赫兹冷冷地注视着他的装置,在心里面想象着电容两段电压不断上升的情形。在电学的领域攻读了那么久,赫兹对自己的知识是有充分信心的,他知道,随着电压的上升,很快两个小球之间的空气就会被击穿,然后整个系统就会形成一个高频的振荡回路 (LC 回路),但是,他现在想要观察的不是这个。果然,过了一会儿,随着细微的“啪”的一声,一束美丽的蓝色电花爆开在两个铜球之间,整个系统形成了一个完整的回路,细小的电流束在空气中不停地扭动,绽放出幽幽的荧光。& && &赫兹反而更加紧张了,他盯着那串电火花,还有电火花旁边的空气,心里面想象了一幅又一幅的图景。他不是要看这个装置如何产生火花短路,他这个实验的目的,是为了求证那虚无飘渺的“电磁波”的存在。那是一种什么样的东西啊,它看不见,摸不着,到那时为止谁也没有见过,验证过它的存在。可是,赫兹是坚信它的存在的,因为它是麦克斯韦 (Maxwell) 理论的一个预言。而麦克斯韦理论 哦,它在数学上简直完美得像一个奇迹!仿佛是上帝的手写下的一首诗歌。这样的理论,很难想象
它是错误的。赫兹吸了一口气,又笑了:不管理论怎样无懈可击,它毕竟还是要通过实验来验证的呀。他站在那里看了一会儿,在心里面又推想了几遍,终于确定自己的实验无误:如果麦克斯韦是对的话,那么在两个铜球之间就应该产生一个振荡的电场,同时引发一个向外传播的电磁波。赫兹转过头去,在实验室的另一边,放着一个开口的铜环,在开口处也各镶了一个小铜球。那是电磁波的接收器,如果麦克斯韦的电磁波真的存在的话,那么它就会穿越这个房间到达另外一端,在接收器那里感生一个振荡的电动势,从而在接收器的开口处也激发出电火花来。实验室里面静悄悄地,赫兹一动不动地站在那里,仿佛他的眼睛已经看见那无形的电磁波在空间穿越。铜环接受器突的电花在铜环的缺口不断地绽开,而整个铜环却是一个隔离的系统,既没有连接电池然显得有点异样,赫兹简直忍不住要大叫一声,他把自己的鼻子凑到铜环的前面,明明白白地看见似乎有微弱的火花在两个铜球之间的空气里闪烁。赫兹飞快地跑到窗口,把所有的窗帘都拉上,现在更清楚了:淡蓝色也没有任何的能量来源。赫兹注视了足足有一分钟之久,在他眼里,那些蓝色的火花显得如此地美丽。终于他揉了揉眼睛,直起腰来:现在不用再怀疑了,电磁波真真实实地存在于空间之中,正是它激发了接收器上的电火花。他胜利了,成功地解决了这个 8 年前由柏林普鲁士科学院提出悬赏的问题;同时,麦克斯韦的理论也胜利了,物理学的一个新高峰――电磁理论终于被建立起来。伟大的法拉第 (Michael Faraday) 为它打下了地基,伟大的麦克斯韦建造了它的主体,而今天,他――伟大的赫兹――为这座大厦封了顶。
赫兹小心地把接受器移到不同的位置,电磁波的表现和理论预测的丝毫不爽。根据实验数据,赫兹得出了电磁波的波长,把它乘以电路的振荡频率,就可以计算出电磁波的前进速度。这个数值精确地等于 30 万公里/秒,也就是光速。麦克斯韦惊人的预言得到了证实:原来电磁波一点都不神秘,我们平时见到的光就是电磁波的一种,只不过它的频率限定在某一个范围内,而能够为我们所见到罢了。无论从哪一个意义上来说,这都是一个了不起的发现。古老的光学终于可以被完全包容于新兴的电磁学里面,而“光是电磁波的一种”的论断,也终于为争论已久的光本性的问题下了一个似乎是不可推翻的定论 (我们马上就要去看看这场旷日持久的精彩大战)。电磁波的反射、衍射和干涉实验很快就做出来了,这些实验进一步地证实了电磁波和光波的一致性,无疑是电磁理论的一个巨大成就。赫兹的名字终于可以被闪光地镌刻在科学史的名人堂里,可是,作为一个纯粹的严肃的科学家,赫兹当时却没有想到他的发现里面所蕴藏的巨大的商业意义。在卡尔斯鲁厄大学的那间实验室里,他想的只是如何可以更加靠近大自然的终极奥秘,根本没有料到他的实验会带来一场怎么样的时代革命。赫兹英年早逝,还不到 37 岁就离开了这个他为之醉心的世界。然而,就在那一年,一位在伦巴底度假的 20 岁意大利青年读到了他的关于电磁波的论文;两年后,这个青年已经在公开场合进行了无线电的通讯表演,不久他的公司成立,并成功地拿到了专利证。到了 1901 年,赫兹死后的第
<font color="#年,无线电报已经可以穿越大西洋,实现两地的实时通讯了。这个来自意大利的年轻人就是古格列尔莫. 马可尼 (Guglielmo Marconi),与此同时俄国的波波夫 (AleksandrPopov) 也在无线通讯领域做了同样的贡献。他们掀起了一场革命的风暴,把整个人类带进了一个崭新的“信息时代”。不知赫兹如果身后有知,又会做何感想?但仍然觉得赫兹只会对此置之一笑。他是那种纯粹的科学家,把对真理的追求当作人生最大的价值。恐怕就算他想到了电磁波的商业前景,也会不屑去把它付诸实践的吧?也许,在美丽的森林和湖泊间散步,思考自然的终极奥秘,在秋天落叶的校园里,和学生探讨学术问题,这才是他真正的人生吧。今天,他的名字已经成为频率这个物理量的单位,被每个人不断地提起,可是,或许他还会嫌我们打扰他的安宁呢?
15-7-6 18:29
注册 14-3-10
传统认为最快,但新闻稿&中科大实现量子瞬间传输技术重大突破&报道:中国科技大学教授主持的量子隐形传态研究项目组2013年测出,的传输速度至少比光速高4个数量级。在量子纠缠的帮助下,带传输量子携带的量子信息可以被瞬间传递并被复制,因此就相当于科幻小说中描写的&超时空传输&,量子在一个地方神秘地消失,不需要任何载体的携带,又在另一个地方神秘地出现。
15-7-6 19:12
注册 13-11-6
有灵异事件的地方磁场都会异常的不是吗?
15-7-7 09:06
注册 09-1-9行业 其它来自 江苏镇江
15-7-7 13:38
注册 14-3-10
QUOTE:原帖由 魏紫姚黄 于 15-7-7 13:38 发表
太深奥了 & &&&正因为深奥,才要去学习。
[ 本帖最后由 丁井人 于 15-7-7 20:52 编辑 ]
15-7-7 18:26
注册 14-3-10
如果一个三岁的幼儿会背三字经,大人们会夸奖他(她)很聪明,但并不是说三字经对三岁幼儿不深奥。而一个初中生或者高中生去学一点量子力学却没有勇气!
15-7-7 21:05
注册 14-3-10
学习量子力学的时候产生误解或者完全理解错误,这说明你是头脑正常的……如果某人说他第一次学量子力学就学懂了那他一定是理解错了,或者在说谎~
15-7-8 18:33
注册 14-3-10
& & 学习量子力学不一定使你成为科学家,但一定能使你有一个新的思维方式。
15-7-8 19:37
注册 14-3-10
& &&&根据量子力学推论——人类神秘主义文化,并不是人类胡思乱想,而是有着宇宙物质客观存在的意义。
15-7-8 21:41
注册 14-3-10
& && &量子力学的应用:在许多现代技术装备中量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置全部依靠量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中量子力学的概念也起了一个关键的作用。
15-7-9 18:14
注册 14-3-10
& &&&看来镇江人对量子力学感兴趣的人太少了!
15-7-9 21:07
注册 14-3-10
& &&&学一点量子力学你才知道什么叫命运
15-7-10 20:25
注册 14-3-10
& && &在量子力学里人类一切神秘现象都将不神秘
15-7-11 09:07
注册 14-3-10
尝试量子力学对意识的解读: 
 1、物质和意识是共生的,简单的说,任何具体事物既存物质也存意识;
 2、物质的具体形式和意识的具体形式都有等级之分,且同等级伴生;
 3、意识为阳,物质为阴,即两仪,能为太极,无极是空;无极生太极,太极生两仪,可以如此对应到易学的研究。
[ 本帖最后由 丁井人 于 15-7-11 09:32 编辑 ]
15-7-11 09:29
注册 14-3-10
& &&&量子力学——万物有灵并非无稽之谈
15-7-11 17:11
注册 14-3-10
爱—— 这个永恒的话题,在量子力学里量子纠缠就是爱的原动力。
15-7-12 19:26
注册 14-3-10
& &&&所谓“量子纠缠"是指不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象,即两个粒子之间不论相距多远,从根本上讲它们还是相互联系的。科学家们认为,这是一种“神奇的力量”。
15-7-12 21:34
注册 14-3-10
对穿过太阳附近的光线的测量验证了相对论,验证了光速的绝对恒定,而且不可能有超过光速运行的物体。而以量子力学为基础的微电子的成功运用,验证了由不确定性原理界定的界限,验证了物质不可能无限可分。这两条限制不仅今天存在,而且永远有效、永远不会消失,它们是组成我们这个宇宙的基本原则。
15-7-13 21:15
注册 14-3-10
量子力学史话——节选
& &&&“ψ是一个空间分布函数。”
薛定谔满有把握地说,“当它和电子的电荷相乘,就代表了电荷在空间中的实际分布。云彩,尊敬的各位,电子不是一个粒子,它是一团波,像云彩一般地在空间四周扩展开去。我们的波函数恰恰描述了这种扩展和它的行为。电子是没有具体位置的,它也没有具体的路径,因为它是一团云,是一个波,它向每一个方向延伸--虽然衰减得很快,这使它粗看来像一个粒子。女士们先生们,我觉得这个发现的最大意义就是,我们必须把一切关于粒子的假相都从头脑里清除出去,不管是电子也好,光子也好,什么什么子也好,它们都不是那种传统意义上的粒子。把它们拉出来放大,仔细审视它们,你会发现它在空间里融化开来,变成无数振动的叠加。是的,一个电子,它是涂抹开的,就像涂在面包上的黄油那样,它平时蜷缩得那么紧,以致我们都把它当成小球,但是,这已经被我们的波函数ψ证明不是真的。多年来物理学误入歧途,我们的脑袋被光谱线,跃迁,能级,矩阵这些古怪的东西搞得混乱不堪,现在,是时候回归经典了。”
“这个宝箱,”薛定谔指着那口大箱子激动地说,“是一笔遗产,是昔日传奇帝国的所罗门王交由我们继承的。它时时提醒我们,不要为歪门邪道所诱惑,走到无法回头的岔路上去。物理学需要改革,但不能允许思想的混乱,我们已经听够了奇谈怪论,诸如电子像跳蚤一般地在原子里跳来跳去,像一个完全无法预见自己方向的醉汉。还有那故弄玄虚的所谓矩阵,没人知道它包含什么物理含义,而它却不停地叫嚷自己是物理学的正统。不,现在让我们回到坚实的土地上来,这片巨人们曾经奋斗过的土地,这片曾经建筑起那样雄伟构筑的土地,这片充满了骄傲和光荣历史的土地。简洁、明晰、优美、直观性、连续性、图像化,这是物理学王国中的胜利之杖,它代代相传,引领我们走向胜利。我毫不怀疑,新的力学将在连续的波动基础上作出,把一切都归于简单的图像中,并继承旧王室的血统。这决不是守旧,因为这种血统同时也是承载了现代科学300年的灵魂。这是物理学的象征,它的神圣地位决不容许受到撼动,任何人也不行。”
薛定谔这番雄辩的演讲无疑深深感染了在场的绝大部分观众,因为人群中爆发出一阵热烈的掌声和喝彩声。但是,等等,有一个人在不断地摇头,显得不以为然的样子,薛定谔很快就认出,那是哥廷根的波恩,海森堡的老师。他不是刚刚称赞过自己的方程吗?难道海森堡这小子又用了什么办法把他拉拢过去了不成?
“嗯,薛定谔先生”,波恩清了清嗓子站起来说,“首先我还是要对您的发现表示由衷的赞叹,这无疑是稀世奇珍,不是每个人都有如此幸运做出这样伟大的成就的。”薛定谔点了点头,心情放松了一点。“但是,”波恩接着说,“我可以问您一个问题吗?虽然这是您找到的,但您本人有没有真正地打开过箱子,看看里面是什么呢?”
这令薛定谔大大地尴尬,他踟躇了好一会儿才回答:“说实话,我也没有真正看见过里面的东西,因为我没有箱子的钥匙。”众人一片惊诧。
“如果是这样的话,”波恩小心翼翼地说,“我倒以为,我不太同意您刚才的猜测呢。”
“哦?”两个人对视了一阵,薛定谔终于开口说:“那么您以为,这里面究竟是什么东西呢?”
“毫无疑问,”波恩凝视着那雕满了古典花纹的箱子和它上面那把沉重的大锁,“这里面藏着一些至关紧要的事物,它的力量足以改变整个物理学的面貌。但是,我也有一种预感,这股束缚着的力量是如此强大,它将把物理学搞得天翻地覆。当然,你也可以换个词语说,为物理学带来无边的混乱。”
“哦,是吗?”薛定谔惊奇地说,“照这么说来,难道它是潘多拉的盒子?”
“嗯。”波恩点了点头,“人们将陷入困惑和争论中,物理学会变成一个难以理解的奇幻世界。老实说,虽然我隐约猜到了里面是什么,我还是不能确定该不该把它说出来。”
薛定谔盯着波恩:“我们都相信科学的力量,在于它敢于直视一切事实,并毫不犹豫地去面对它,检验它,把握它,不管它是什么。何况,就算是潘多拉盒子,我们至少也还拥有盒底那最宝贵的东西,难道你忘了吗?”
“是的,那是希望。”波恩长出了一口气,“你说的对,不管是祸是福,我们至少还拥有希望。只有存在争论,物理学才拥有未来。”
“那么,你说这箱子里是……?”全场一片静默,人人都不敢出声。
波恩突然神秘地笑了:“我猜,这里面藏的是……”
“……骰子。”
[ 本帖最后由 丁井人 于 15-7-13 21:59 编辑 ]
15-7-13 21:52
注册 09-4-25行业 其它
QUOTE:原帖由 丁井人 于 15-7-13 21:52 发表
量子力学史话——节选
& &&&“ψ是一个空间分布函数。”
薛定谔满有把握地说,“当它和电子的电荷相乘,就代表了电荷在空间中的实际分布。云彩,尊敬的各位,电子不是一个 ...
这段摘录自曹天元《上帝掷骰子吗--量子物理史话》《量子力学史话》是本很老的书了,估计比楼主你年龄都大
15-7-14 00:11
注册 14-3-10
QUOTE:原帖由 大市口小市民 于 15-7-14 00:11 发表
这段摘录自曹天元《上帝掷骰子吗--量子物理史话》《量子力学史话》是本很老的书了,估计比楼主你年龄都大 谢谢你!只是想让更多的人来了解一下量子力学。
15-7-14 17:27
注册 14-3-10
宇宙大爆炸
的出现意味着一种全新解释宇宙大爆炸的说法,该说法表明我们生活的整个宇宙是一层可以随意弯曲 拉伸的膜,也称为三维空间,在不远的地方也有一层膜,可以说是另一个宇宙,也是三维空间,当中的空隙,是四维空间,在某种未知力(有可能是)的作用下,两层膜以极慢的速度缓慢接近,遐想的距离为10亿万光年(10*10的12次方),当膜接触后,相互碰撞,动能转化为热能,热能开始缓慢在膜上散开,宇宙中的万物开始毁灭,然后冷却,开始新的循环。这就是新理论的宇宙大爆炸,当碰撞后,两层膜又弹回原来的位置,重新在未知力的作用下,缓慢接近,如此往复,宇宙开始循环,永不停止。
15-7-15 21:01
& 量子力学与人类神秘主义文化&nbsp&nbsp
Powered by
0.033996 s
梦溪论坛的帖子由网友发布并不代表网站官方之意见及观点。如需转载本论坛文字及图片请注明出自梦溪论坛,商业用途需征得作者本人同意!
发帖、回帖拥有个人空间
上传及分享相册精彩内容推荐量子力学主要讲了什么
10-01-26 &匿名提问 发布
量子力学  量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。  有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的许多随机事件的例子,严格说来实为决定性的。目录[隐藏]量子力学的发展简史量子力学的基本内容量子力学诠释:粒子的振动“波”和“粒子”统一的数学关系量子力学的诞生量子力学的产生与发展量子力学处理微观体系的步骤:  [编辑本段]量子力学的发展简史  量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。  1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。  1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。  1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。  在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。  德布罗意的物质波方程:E=?ω,p=h/λ,其中?=h/2π,可以由E=p&sup2;/2m得到λ=√(h&sup2;/2mE)。  由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。  量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。  当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。  量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利(pauli)等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。  量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。  1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。  海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥?/2。[编辑本段]量子力学的基本内容  量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。  在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。  态函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。  根据狄拉克符号表示,态函数,用&Ψ|和|Ψ&表示,态函数的概率密度用ρ=&Ψ|Ψ&表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。  态函数可以表示为展开在正交空间集里的态矢比如|Ψ(x)&=∑|ρ_i&,其中|ρ_i&为彼此正交的空间基矢,&m|n&=δm,n为狄拉克函数,满足正交归一性质。  态函数满足薛定谔波动方程,i?(d/dt)|m&=H|m&,分离变数后就能得到不含时状态下的演化方程H|m&=En|m&,En是能量本征值,H是哈密顿能量算子。  于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。  关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。  但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。  但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。  据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。  20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。  量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。  人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。  量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离 . 不确定性指经济行为者在事先不能准确地知道自己的某种决策的结果。或者说,只要经济行为者的一种决策的可能结果不止一种,就会产生不确定性。  不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。  不确定性,经济学中关于风险管理的概念,指经济主体对于未来的经济状况(尤其是收益和损失)的分布范围和状态不能确知。  在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。  在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。  波尔波尔,量子力学的杰出贡献者,波尔指出:电子轨道量子化概念。波尔认为,原子核具有一定的能级,当原子吸收能量,原子就跃迁更高能级或激发态,当原子放出能量,原子就跃迁至更低能级或基态,原子能级是否发生跃迁,关键在两能级之间的差值。根据这种理论,可从理论计算出里德伯常理,与实验符合的相当好。可波尔理论也具有局限性,对于较大原子,计算结果误差就很大,波尔还是保留了宏观世界中,轨道的概念,其实电子在空间出现的坐标具有不确定性,电子聚集的多,就说明电子在这里出现的概率较大,反之,概率较小。很多电子聚集在一起,可以形象的称为电子云。[编辑本段]量子力学诠释:粒子的振动  、霍金膜上的四维量子论  类似10维或11维的“弦论”=振动的弦、震荡中的象弦一样的微小物体。  霍金膜上四维世界的量子理论的近代诠释(邓宇等,80年代):  振动的量子(波动的量子=量子鬼波)=平动微粒子的振动;振动的微粒子;震荡中的象量子(粒子)一样的微小物体。  波动量子=量子的波动=微粒子的平动+振动  =平动+振动  =矢量和  量子鬼波的DENG&#39;S诠释:微粒子(量子)平动与振动的矢量和  粒子波、量子波=粒子的震荡(平动粒子的震动)[编辑本段]“波”和“粒子”统一的数学关系  振动粒子的量子论诠释  物质的粒子性由能量 E 和动量 p 刻划,波的特征则由电磁波频率 ν 和其波长 λ 表达,这两组物理量的比例因子由普朗克常数 h(h=6.626*10^-34J·s) 所联系。  E=hv , E=mc^2 联立两式,得:m=hv/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mc  则p=hv/c(p 为动量)  粒子波的一维平面波的偏微分波动方程,其一般形式为  ?ξ/?x=(1/u)(?ξ/?t) 5  三维空间中传播的平面粒子波的经典波动方程为  ?ξ/?x+?ξ/?y+?ξ/?z=(1/u)(?ξ/?t) 6  波动方程实际是经典粒子物理和波动物理的统一体,是运动学与波动学的统一.波动学是运动学的一部分,是运动学的延伸,即平动与振动的矢量和.对象不同,一个是连续介质,一个是定域的粒子,都可以具有波动性.(邓宇等,80年代)  经典波动方程1,1&#39;式或4--6式中的u,隐含着不连续的量子关系E=hυ和德布罗意关系λ=h/p,由于u=υλ,故可在u=υλ的右边乘以含普朗克常数h的因子(h/h),就得到  u=(υh)(λ/h)  =E/p  邓关系u=E/p,使经典物理与量子物理,连续与不连续(定域)之间产生了联系,得到统一.  2.粒子的波动与德布罗意物质波的统一  德布罗意关系λ=h/p,和量子关系E=hυ(及薛定谔方程)这两个关系式实际表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分.德布罗意物质波是粒波一体的真物质粒子,光子,电子等的波动.[编辑本段]量子力学的诞生  19世纪末20世纪初,经典物理已经发展到了相当完善的地步,但在实验方面又遇到了一些严重的困难,这些困难被看作是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。下面简述几个困难:  ⑴黑体辐射问题  完全黑体(空窖)在与热辐射达到平衡时,辐射能量密度随频率的变化有一个曲线。W.Wien从热力学普遍理论考虑以及分析实验数据得出一个半经典的公式,公式与实验曲线大部分符合得不错,但在长波波段,公式与实验有明显的偏离。这促使Planck去改进Wien的公式得到了一个两参数的Planck公式,公式与实验数据符合得相当好。  ⑵光电效应  由于紫外线照射,大量电子从金属表面逸出。经研究发现,光电效应呈现以下几个特点:  a. 有一个确定的临界频率,只有入射光的频率大于临界频率,才会有光电子逸出。  b. 每个光电子的能量只与照射光的频率有关。  c. 入射光频率大于临界频率时,只要光一照上,几乎立刻观测到光电子。  以上3个特点,c是定量上的问题,而a、b在原则上无法用经典物理来解释。  ⑶原子的线状光谱及其规律  光谱分析积累了相当丰富的资料,不少科学家对它们进行了整理与分析,发现原子光谱是呈分立的线状光谱而不是连续分布。谱线的波长也有一个很简单的规律。  ⑷原子的稳定性  Rutherford模型发现后,按照经典电动力学,加速运动的带电粒子将不断辐射而丧失能量。故,围绕原子核运动的电子终会因大量丧失能量而’掉到’原子核中去。这样原子也就崩溃了。但现实世界表明,原子是稳定的存在着。  ⑸固体与分子得比热问题  在温度很低的时候能量均分定理不适用。  Planck-Einstein的光量子理论  量子理论是首先在黑体辐射问题上突破的。Planck为了从理论上推导他的公式,提出了量子的概念-h,不过在当时没有引起很多人的注意。 Einstein利用量子假设提出了光量子的概念,从而解决了光电效应的问题。Einstein还进一步把能量不连续的概念用到了固体中原子的振动上去,成功的解决了固体比热在T→0K时趋于0的现象。光量子概念在Compton散射实验中得到了直接的验证。  Bohr的量子论  Bohr把Planck-Einstein的概念创造性的用来解决原子结构和原子光谱的问题,提出了他的原子的量子论。主要包括两个方面:  a. 原子能且只能稳定的存在分立的能量相对应的一系列的状态中。这些状态成为定态。  b. 原子在两个定态之间跃迁时,吸收或发射的频率v是唯一的,由hv=En-Em 给出。 Bohr的理论取得了很大的成功,首次打开了人们认识原子结构的大门,它存在的问题和局限性也逐渐为人们发现。  De Broglie的物质波  在Planck与Einstein的光量子理论及Bohr的原子量子论的启发下,考虑到光具有波粒二象性,de Broglie根据类比的原则,设想实物理子也具有波粒二象性。他提出这个假设,一方面企图把实物粒子与光统一起来,另一方面是为了更自然的去理解能量的不连续性,以克服Bohr量子化条件带有人为性质的缺点。实物粒子波动性的直接证明,是在1927年的电子衍射实验中实现的。  量子力学的建立  量子力学本身是在年一段时间中建立起来的。两个等价的理论---矩阵力学和波动力学几乎同时提出。矩阵力学的提出与Bohr的早期量子论有很密切的关系。Heisenberg一方面继承了早期量子论中合理的内核,如能量量子化、定态、跃迁等概念,同时又摒弃了一些没有实验根据的概念,如电子轨道的概念。Heisenberg、Bohn和Jordan的矩阵力学,从物理上可观测量,赋予每一个物理量一个矩阵,它们的代数运算规则与经典物理量不同,遵守乘法不可易的代数。波动力学来源于物质波的思想。Schr dinger在物质波的启发下,找到一个量子体系物质波的运动方程-Schr dinger方程,它是波动力学的核心。后来Schr dinger还证明,矩阵力学与波动力学完全等价,是同一种力学规律的两种不同形式的表述。事实上,量子理论还可以更为普遍的表述出来,这是Dirac和 Jordan的工作。  量子物理学的建立是许多物理学家共同努力的结晶,它标志着物理学研究工作第一次集体的胜利。[编辑本段]量子力学的产生与发展  量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。  19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。  著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。  1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差AE=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了 72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。  由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。  1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。  光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学———费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原于中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。  1924年,法国物理学家德布罗意提出了表达波粒二象性的爱因斯坦———德布罗意关系:E=hV,p=h/入,将表征粒子性的物理量能量、动量与表征波性的频率、波长通过一个常数h相等。  1925年,德国物理学家海森伯和玻尔,建立了量子理论第一个数学描述———矩阵力学。1926年,奥地利科学家提出了描述物质波连续时空演化的偏微分方程———薛定愕方程,给出了量子论的另一个数学描述——波动力学。1948年,费曼创立了量子力学的路径积分形式。  量子力学在低速、微观的现象范围内具有普遍适用的意义。它是现代物理学基础之一,在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。量子力学的产生和发展标志着人类认识自然实现了从宏观世界向微观世界的重大飞跃。[编辑本段]量子力学处理微观体系的步骤:  1. 根据体系的物理条件,写出它的势能函数,进一步写出 Hamilton算符及 Schrodingger方程。  2. 解Schrodinger方程,根据边界条件求ψn和En。  3. 描绘出ψn、︱ψn︱等的图形,并讨论其分布特点。  4. 由上面求得的,进一步求出各个对应状态的各种力学量的数值,从中了解体系的质。  5. 联系实际问题,对求得的结果加以应用。  量子力学在小说《我们无处安放的青春》中的解释....  罗慧:在量子力学的世界里边只有变数没有常数。就好比今天我在这给你们讲课。从量子力学的角度来看,因为里边充满了太多的变数,这个概率接近于零,也就是说这完全是一个偶然。所以,我想我们大家都应该珍惜这个偶然。  李然:就说量子力学吧,在量子力学的世界里面,只有变数没有常数,就好像我能预见你,如果从量子力学的角度来看,里面充满了太多变数,这个概率接近于零,也就是说这完全是一个偶然,所以我们大家都应该珍惜这个偶然.
请登录后再发表评论!

我要回帖

更多关于 量子力学的创始人是 的文章

 

随机推荐