微纳金属3D打印技术应用:AFM探针?

因具有高分辨率、可实现复杂结构精细打印的特点,DLP光固化3D打印技术已在生物制造领域大放异彩。目前,其已被用于多种组织的重建或修复研究,包括脊髓、周围神经、血管等。现行DLP生物制造研究主要在体外进行组织的构建,经过一定时间培养后植入体内,这往往会造成二次创伤。若能通过微创方式在皮下直接进行3D打印将大大降低医源性创伤带来的风险。

通常,DLP墨水的光引发剂需要通过紫外、蓝光或可见光激发(图1)。这些光波的组织穿透能力差,难以实现皮下固化。波长780~2526nm的不可见近红外(NIR)光可以穿透深层组织,并已用于药物控释、光动力疗法、光热疗法、体内成像等,是一种广泛使用的组织穿透性光波。若想实现NIR固化生物墨水,就需要适配的光引发剂。上转换材料可将近红外光转化为紫外/可见光,将其与普通DLP光引发剂结合使用即可实现生物墨水的NIR固化。

近日,四川大学的苟马玲研究员、钱志勇教授和魏霞蔚教授团队通过蓝光引发剂LAP包裹上转换纳米粒子制备了核-壳结构纳米光引发剂(UCNP@LAP)。依托该光引发剂开创性地实现了皮下原位DLP打印。相关研究论文:Noninvasive in vivo

图1 光固化生物打印常用光引发剂及其激发波段

图2 基于UCNP@LAP核-壳结构纳米光引发剂的近红外皮下DLP打印

上转换材料是一种能实现上转换发光的材料。所谓上转换发光,指的是材料受到低能量的光激发,发射出高能量的光,即将吸收的长波长、低频率光转换为短波长、高频率光。

上转换材料由无机基质及镶嵌在其中的稀土掺杂离子组成,通过调节无机基质及掺杂稀土离子组成、比例可将近红外激发光转化为紫外或可见光。

研究人员通过改进的方法合成了水性上转换材料纳米粒子(UCNPs),该上转换纳米粒子可在水溶液中稳定分散且表面带正电荷,通过与带负电荷LAP间的静电吸附作用制备了核-壳结构的UCNP@LAP纳米光引发剂(图3A)。与上转换材料/LAP直接混合相比,这种核-壳结构有效提高了近红外光的激发效率。同时,由于LAP的包裹,UCNP发射出的紫外光被LAP屏蔽吸收(图3D),降低了对细胞的损伤。

模拟皮下DLP打印测试


  • AFM长篇综述:软物质/软材料的3D打印

  • 高精度3D打印聚合物生物支架定制

  • 高精度3D打印水凝胶生物支架定制

  • 3D打印构建全血管网络及肿瘤-血管相互作用初探
  • 生物3D打印-从形似到神似
  • 3D打印助力骨科精准临床应用:临床案例解

  • 多尺度3D打印高生物相容性及力学强度兼具的组织工程支架

超声成像具有实时、低成本等优点,被广泛用于人体内部器官成像和血流测量,能够指导和检测医学治疗过程,显著提高了医疗的有效性。成像领域的进一步发展则依赖于弹性组织模型的开发,目前水凝胶、油凝胶和硅弹性体等材料常被用于制备弹性组织代用品。聚乙烯醇水凝胶因其高含水量、低摩擦性和生物相容性被广泛使用,其弹性与人体动脉的弹性相似,适合于构建与真实生物力学特征相似的动脉模型。然而,目前的水凝胶成型过程通常需要耗时的冻融过程,易出现结构变形等问题,且缺乏对模型硬度的精准控制。

近日,滑铁卢大学唐晓武教授/江南大学吴赟博士开发了一种缩水甘油醚和纤维素纳米晶组成的打印墨水,利用嵌入直接书写打印方式直接一步打印出了可超声成像的仿生动脉模型,打印模型显示出了优异的弹性和生物相容性,与超声成像具有良好的兼容性。在超声成像下,打印动脉模型中血液流动行为可用于模拟健康和动脉硬化的行为,有望在生物医学研究中得到广泛应用。这项工作以“Embedded

研究人员首先利用聚乙烯醇(PVA)和缩水甘油醚(GMA)在碱性条件下的酯化和开环聚合制备了光交联的PVAGMA。通过改变PVA和GMA的比例,制备了六种PVAGMA样品(图1)。单一PVAGMA溶液仅显示出有限的剪切变稀行为,而引入纤维素纳米晶(CNC)可以明显提高溶液的剪切变稀能力(图2)。

声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!

我要回帖

更多关于 3d打印打印金属贵吗 的文章

 

随机推荐