雷诺自行车车架架的设计资料谁有

TA的帖子:
发表于 12:00:27
查看: 20097
引言:当我们选择一款车架时,车架的重量、材料、尺寸等等因素成为我们选择的一种评判。往往会忽略“车架角度”这个很重要的因素,很多高端车架比的就是一个角度而已。那么让我们接着来看一看什么是车架角度,什么样的角度算好。
---------------------------------------分割线----------------------------------------------
下文转载自
自行车网 略有修改
大部分的骑车人或自行车族,都将车架的几何当成一种魔法妖术,里面充满了难以理解、永远都搞不懂的事实。几乎所有的现代越野登山车只在几种角度内变来变去,两度的差异就可立判车架的高下。二十年来的试验造就了一个放诸四海皆准的登山车车架几何:71°的头管角度、73°的座管角度、23英寸的上管长度、16.9英寸 的后下叉长度及12英寸的BB高度。虽然实在很难说得出两个不同厂牌的车子,骑起来的操控感觉有什么了不起的重大不同,但是,不一样真的就是不一样!
放一张图让我们对车架上的各个部分有一个认识
a1799aef76c6a7eff2fc9c8afdfaaf51f2de662f.jpg (0 Bytes, 下载次数: 11)
11:29:55 上传
A:中管center to top长度(有人管它叫座管,但是容易和那个零件搞混,enter to top是说中轴轴心到中管顶端)
B:水平上管长度
C:实际上管长度
D:头管角度
E:中管角度
F:头管长度
H:不清楚中文是什么。可以叫“中轴沉距”
I:后平叉长度(也有人叫传动距)
座管角度 seat tube angle
座管角度是指座管向后倾斜的角度,用以补偿骑士腿长。当座垫在合适的高度时,也就是脚可以完美伸展的状态下,在大齿盘曲柄指向三点钟方向时,你的脚踝必须在你的膝盖之下。
座管角的作用
  一百年的车架制造史经验积累,设计师们发现,73°的座管角度,可以满足大部分 的骑士。这个角度可以弥补腿短的骑士,高个子的人拉高座垫时,座垫位置可以往后移一些,而小个子的人调低座垫, 座垫位置是稍微往前跑的。当然有例外的身材,但是当73° 座管角和座垫的前后调整配合时,几乎可以将所有骑士安置 于和曲柄搭配好的正确、适当的位置。当然,这是普遍情况。有充分的理由驱使设计师们试着再将座管角度后倾或前挺一些。
座管角度的影响
  座管角度同时也决定了骑士体重在前后两个轮子之间的均衡分配,也就是重心。骑 士愈高,那么他坐上车子后,大部分的体重会落在前轮。爬坡时,体重与重心反而向后移,如果后下叉没有稍微做长一些来补偿的话,在每一次踩踏时,容易出现「翘孤轮」的情形。对小个子的骑士来说, 状况就正好相反,把座垫调低,重心会往前跑,爬陡坡时,也会减少车轮的循迹、贴地性。
  座管角度被高估了的一点是总轮距(wheelbase)的影响。为了维持正确的上管长度固定不变,座管如果因而迁就做挺直一些,不就把上管向前推了,影响所及就是头管也向前位移,也就是最后连轮距也跟着加长了;相反的,座管角度小一点,轮距就短了。传统的公路车架制造者相信,完美的轮距是一公尺。藉着改变座管及头管角度,他们可以坚持不会动到他们那神圣的轮距规格,而变化出不同的车架尺寸和上管长度。
  然而登山车设计师则应用另一组不同的规则来设计车架。操纵座管角度来制造出正确轮距,只有在你为躯干长于一般人,或是腿特别长的人量身订制车架时才有意义。
座管角度须知
  选择座管角度来定位你的脚在曲柄上的位置是否适合,并确认后上叉(seatstay)的长度正确,让体重重心落于后轮。
(0 Bytes, 下载次数: 61)
11:32:42 上传
(0 Bytes, 下载次数: 32)
11:31:45 上传
(0 Bytes, 下载次数: 28)
11:33:43 上传
上管长度提供手臂的伸展,而愈斜的头管角让下陡坡的操控愈容易
  上管长度的丈量是头管上缘水平切线延伸到和座管相交会的长度。从实际角度来说,它就是自行车操控零件/上部零件(Cockpit)的距离。因为大部分的登山车的车结构造,已跳脱传统钻石车架的形貌,有的上管下弯(sloping)或如 specialized那种「两段式」上管,如果你去量实际的「管材长度」,那根本没有意义。
上管长度的作用
  当你倾斜进出弯道时,前叉Offset与头管角度会自动修 正前轮出弯的路线
  上管长度提供了你上半身的容身空间,并让手臂可以完美的伸展、握到车把上;另 一方面,它也让车把和你的膝盖「保持安全距离」,你即使起身踩踏时,膝盖也不会撞到车把。所以,上管最主要的功 能就是proper fit—创造出自行车上合于你的骑车空间。
  然而上管长度扮演了另一个重要的角色:车子的重心分布。长上管让骑士的体重向前移(较往前趴!),重心前移到接近前后轴距的中心点位置;短上管则增加车子前端的重量负载。
  上管长度最大的变动也只在一英寸之内:如果上管的长度比你适用的正确长度长过一英寸,你的前轮的重量分配就 变少了,骑车过弯时,前轮就可能会不易控制而产生滑动;如果缩短超过一英寸,起身立姿踩踏时,膝盖就免不了会碰 到手把上的变速器了,而且前轮遭遇了大石头路面及松软的深沙地,就会难以控制了。
上管长度的影响
  因为骑车时,身体是不断移动变化的,车架上管长度的任何一点变化,都会关系到竖管和龙头的配合问题。越野骑士会偏好「长龙头竖管/短 上管」的搭配,上半身就会伸展出去,和前轴协调一致了, 也就像骑跑车一样的姿势。长龙头竖管/短上管的组合让前轮维持直线转动,当你用力向下踩时,完全不顾远方视野只 看在龙头前方近处,要看远一点,脖子会抬得酸。这种「跑 车骑姿」的车架上管和龙头的组合搭配,侵蚀了自行车的过 弯(corning)及技术操控(technical handling)性能,但XC(越野)比赛通常胜败的关键在爬坡,而不是平路冲刺及下坡技巧,这不是什么秘密了。一般人还是喜 欢这样的零件搭配、跑车骑姿,以为这样可以飙得比较快!
  如果你要求下坡性能,freerider和DH选手则会采用较 「长的上管及短龙头」的组合,刚好和越野选手相反。这种车子骑平路,踩踏和手把操 控起来,感觉很别扭,就像醉酒一样,车头好像会歪七扭八。可是当车子箭头直指陡降 坡时,它就蜕变成了出闸猛虎,车子和骑士的重心即刻后移。长上管/短龙头的标准 freerider/DH骑乘组合,让骑士坐落在车子较后半部的位置, 他的体重、重心在两轮之间产生较正面的助益,但这只有下 坡时才成立。
上管长度须知
  事实上,龙头和上管是各自独立的,其影响的骑乘感也是各有不同的。对越野和林道骑行的爱好者而言,应该挑那种可以让你搭配100mm到125mm长的龙头的上管。这样的组合才是讲究爬坡效率和下坡操控性及高技巧要求的最佳折衷点。
后下叉 Chain stays
正确的后下叉长度,是指BB和后轮轴心之间的水平距离。全避震车的后三角转臂 代替了后下叉的功能。大部分的车架制造者,量后下叉长度都是沿着后下叉的中间线,如此一来,因为钩爪有角度,会比正确长度多出八分之一英寸左右。
  适用于一般林道骑乘的全避震车多半有较斜的头管角度,以增加高速稳定度及前后避震作用的平衡
后下叉的作用
  后下叉长度决定了骑士的体重有多少落于后轮。后下叉愈短,就会有愈大比例的体 重传递到后轮去,不管你是站着或坐着骑都一样。短车身后部(rear end)的明显好处是具有更好的爬坡时的贴地及循迹性。而后下叉较少为人所知的 方面是,其实它也会影响过弯性能。较长的后下叉可以平衡 前后两轮是贴地或滑动;较短的后下叉则会让前轮过弯时滑 动,除非骑士重心前移,故意用体重去镇压住前轮。后下叉规格的「魔术数字」是:越野前避震车约16.75英寸,而全避震的越野车是17英寸最适合。
后下叉的影响
  后下叉长度、车架尺寸和座管角度是焦不离孟、孟不离焦的连体婴。改变座管角度,会改变一个骑士座姿骑车的重心分布。向后倾的座管把 高个子骑士原本会偏向前轮的重量往后带了。在这个情形下,后下叉长度必须调整到正确的重心位置。起身骑车时,座管角度就影响不了后轮的贴地循迹性—只有后下叉长度还有作用。最好的设计师会取舍后下叉长度及座管角度两者的均衡配合,让不管坐或立姿爬 坡的循迹贴地性都可以持续维持。
  在后避震出现之前,一个顶尖的爬坡高手和软脚虾的差别,可能就差在后下叉长度这四分之一英寸之间。避震车可以使用长一点的后叉(stay),因为座管角度后仰到一个较低的位置,可以在爬坡时让后避震器自然而然地压缩。
后下叉长度须知
  又被称为链支叉的后下叉长度上一点小小的差别,对登山车的操控性有大大的影响,愈是挺直的座管,愈需要短一点的后叉。
指地面到BB轴/曲柄轴中心点的垂直高度,它决定了曲柄回旋至最下端,指着「六点半」方向时,脚踏和地面的间距大小。
BB高度的作用
  BB高度的最主要功用,就在于和地面保持适当的距离。也就是说曲柄轴必须够高,在你强行通过布满岩石及树根的车道时,「齿盘」和曲柄/脚踏才不会去撞到。BB低的车子,缺少了有效过弯的空间性,当你要加速踩踏,从弯道奔向直路时,脚踏还可能划到地面。
  BB高度也决定了整台车子的高度多高。因为骑车人的腿长腿短差别很大,BB高度 的上升、下降都会动到座垫的高度,在大部分情形下,也会牵连了车架上管的高度。同样的道理,BB高度也决定、关系着整台车子的重心。当你猛力刹车或是上下陡坡时,重心高的车 子会夸大化体重在前后两个轮子间的分配比例。降低BB呢,重心降低,前轮在刹车时,车身前端比较不会下沈,爬陡坡时比较不会有翘前轮的情形,同时骑过起伏不平的路面时,轮子可以更早地转动。
  三角形的秘密:自行车操控最主要的秘诀就是抓出重心位置,以前后轴心与虚拟的重心位置所假想出的三角型,其三角型底部愈大,自行车的骑乘感愈稳定,而骑士可随着骑乘姿势的不同,不断移动重心位置,以符合所需。
BB高度的影响
  BB高度许配给轴距长度了,两者间有着亲密关系。前后轴距愈长,BB就可以做得愈高,而不会造成车子骑过崎岖路面,一路弹跳个不停,像只未驯服的野牛。相反的,降低短轴组合的车架的BB高度,车子骑起来才平顺。
  至于前后避震车则需要比一般车子高一些的BB高度。因为人坐上全避震车,体重会 让避震前叉及后避震同时压缩,也就是所谓的“SAG”,压缩行程愈多,BB就愈接近地面,如此一来,会坏了登山车的操控性。大部分的设计师同意:最完美的妥协下的BB高度,全避震车是在12.5到13.5英寸之间;前避震车则在 11.5到12.5之间。
  下坡车的BB高度差别就比较大,从12.5到15英寸之间。同样的基本原则也可以用于无视地心引力,挑战飞跃高度及落差的自行车小飞侠。但是,BB高度太低(low-slung designs),上了赛道,在某些关卡、地形状况下,你会没办法 踩踏,即便你装了个165mm的短曲柄,因为脚踏和车架底部 可能会刮到地面或撞到障碍物;而高BB的下坡车必须搭配长轴距,才不会有上述的车 子跳动的问题。
BB高度须知
  越野全避震车一族最佳的BB高度介于12.5到13.5英寸之间;前避震车最喜欢12英寸的BB高度。BB高度愈高,轴距也必须愈长,车子骑起来才会平顺、平稳。
也就是前后两个轮轴之间的距离。
  注重爬坡的XC车款,其座管角度及头管角度较直,以配合车手把陡坡时移的重心,避免前轮在上坡时举起。
总轮距的作用
  长轴距的车子骑过颠簸地形时,比较平顺、稳定,猛力刹车及爬陡坡时,重心的转移、变化较不明显,影响力就小了。高高地坐在车子上的骑士,整个重量的80%压在车子上。举例来说,一个坐着骑车的登山车骑士,他的重心会落在座垫鼻端上方大约2英寸的地方;如果他站起身来骑车,体重都由脚踏去承受,会有效地降低重心高度,介于座垫和BB之间。如果轴距太短的话,在你用力把前刹车压到底或前轮撞到大石头时,车子会很不稳定;而且爬坡时,前轮会翘孤轮。轴距太长,车子的操控性会变得迟钝,你必须时常改变骑姿来维持循迹贴地性,或着拉抬前轮来跨越障碍。广为接受的轴距标准规格是,越野自行车约42英寸加减半寸左右。
总轮距的影响
  在重心及两个轮轴间连线,画一个想像的三角形,我们就能轻易地看出:轴距愈长,三角形底边就愈长,和重心高度配合起来,整个三角形的比例就愈稳固。藉此,你也就愈能容易了解长轴距之所以需要较短后下叉及高一点的BB,以便有足够的重心移转到后轮去,来增加爬坡的循迹贴 地性。
  轴距的长度也和车架尺寸息息相关。大尺寸的车子,轴距自然比较长,小尺码的车架,轴距就短。高个子的骑士骑轴距短的小车子没关系,因为他们可以比小个子更不受车架限制、有效率地变换姿势,来增加骑崎岖路面的稳定性。
总轮距须知
  长轴距的车子骑起来比较平稳,但转弯会比较慢、比较迟顿(回转半径长)。骑车当中的身体重心的移动,也比较不会影响车子的操控性;短轴距的车子比较灵敏,但骑到颠簸路面,就比较能感受到颠簸。轮距的魔术数字大约是42 英寸。
  总轮距的神奇之处由于上管维持相对的尺寸, 在移动座管角度的情况之下,总轮距长度也跟着变化,也影响到重心分配的问题。
/forum/w%3D580/sign=d42a036bb4c92e/bdb89b2febb8b899a.jpg
车头/头管角度
指两个东西—车架头管的角度及「前叉轴」(fork axle)的角度。车头角度决定了车子的操控灵活度,及它与生俱来的稳定性。
车头/头管角度的作用
  头管角度决定了前轮的转动,实际上到底给了多少下压力量带动车子头管、再带动整台车子前进。车头角度愈小,你必须出力愈出力转车把,前轮才会左右转动。直挺的车头角度(72°),感觉起来会比较灵敏,而且车把转起来 感觉会比较轻,左右转动比较简单省力。但这样也会导致车子高速中,操控几何的反应太快,增加了轮子左右摆动的不 稳定性。低一点的车头角度(70°),车把转起来比较重,但龙头的左右转控比较可预期,高速骑乘比较好操控。
  越野选手偏好介于72°到71°之间的挺直的车头角度,因为挺直一点的角度下拉抬车把/车头跨过颠簸,愈是立姿骑行时加速,比较不会受到侧向力量的影响(灵活)。林道一族及freeride一族,特爱介于70.5°到69°之间的低角度的头角,因为这样他们有更多骑乘中临场反应时间,及下坡俯冲时更好、更稳的操控性。
  因为重心在整个操控几何扮演了极重要的机制,爬坡及下坡会改变车头角度的影响力。车头角度加大(upgrade), 会让车头的动作变慢,也就是转起来比较重、比较迟钝。相反的,角度改小(down-grade),车头会比较挺,也就比较不稳定。
  而车头角度也在车子的「自我校正」的功能(ability to self-correct)及「维持平衡不倒」(maintain its own balance)扮演重要的角色。下坡时,事实上地面的斜度把车头角度「调整」得更为直挺,比如说,71°的头管原本那向后倾的19°角被 地面斜度所中和了,在同样的情形下,69°的头角还是能够自我校正,迎合你稳定操控车子的努力,下坡车的头角大致上是65°到68°之间,以维系操控性要素的功能发挥。
  当前轮角度离开自行车循迹路线时,头管转轴与接触点的夹角可轻易的控制转动前轮,Trail的功能就是迫使前轮遵循着头管转轴转动。
车头/头管角度的影响
  车头角度和前叉的offset一起形成了一种叫做「trail」 的评量/度量单位。Trail愈大愈长,车子愈能够直直的、平稳的往前跑的前进力量愈大。(理论上和实际上,我们牵来一台自行车,在平路上往前推,让车子自己跑,它是「不会倒」的。trail愈小,骑车前进的感觉会比较轻盈下压(磨擦力小),前轮的转动也比较灵巧。小车头角度可以让短尺寸组合的车架感觉起来较稳定,而长轴距设计的车子,可以藉较直挺的头角,让它的转动速度较迅捷。
  车头角度也改变、左右了避震前叉面对撞击、弹跳的反应性。直挺的车头角度让前叉滑动的方向更垂直,前叉对小撞击和低速时的避震会更灵敏;低一点的车头角度,在猛力刹车时,比较不会有车头下沉情形,对付大冲击的能力会比较好—但牺牲了低速时的灵敏度。
  前避震车配直挺的车头角度较好;前后避震车通常用比较低一点的头管角度,如越野车款大约用70°,愈直挺的角度让全避震车在刹车及起身立姿骑车时,像只脱缰野马。
车头角度须知
  71°是最受欢迎的车头角度,因为这个角度让车子爬坡时,车头旋转的感觉比较轻灵。缩小个一两度,可以让全避震车在猛力重踩及刹车时稳如泰山。角度的高低影响着车子的操控几何 (steering geometry)。
  当前轮角度离开自行车循迹路线时,头管转轴与接触点的夹角可轻易的控制转动前轮,Trail的功能就是迫使前轮遵循着头管转轴转动。
/forum/w%3D580/sign=b82ed38f73f1377bfafb8a/395cad1c8a6865d0c.jpg/forum/w%3D580/sign=6783f5aaafc621dbc5b784/e5fcf24b49da1f8dcd100bba12b12.jpg
前叉的offset及Trail
  这是有关操控几何方面,一般人最陌生、了解最少的部分了(一般的整车的型录,甚至有一些没有列这两项数据),而且这两者是密不可分的。所谓的前叉offset是指前叉轴和前叉立管/头管两条虚拟切线的距离,你延着车头管中心点,顺着车头角度划一条切线而下,前轮轴(操控轴)并不在这条操控转轴联机,却是在前面一点的地方。如果你顺着头管中心画切线和地面的 交叉点做记号A,然后再以前轮轴往地面划一条垂直线,得到另一个交叉点B,这个B点正好就是轮胎和地面的接触点,AB两点的距离就是 trail。
Trail的作用
  因为外胎接触地面的点,是在车头操控转轴的「后方」,也就是“trailing”尾随 着头管角度(trailing the head tube)。任何时刻车轮角度远离车子前进的方向,trail会强迫、引导前轮跟着转轴的方向跑。trail愈长,车子的「自我 校正」方向的作用愈好。
  前叉的offset的多寡,左右了trail的多寡:offset愈大, trail愈小。第二方面,也更重要的是,前叉的offset对车子的 操控性也扮演举足轻重的角色。因为轮子的重量及大部分的前叉重量是offset在前轮轴 的上方和前方的,当你骑车侧斜车身准备转弯,轮重和前叉重反而是掉到这个斜度里面来了。前叉及轮子重量对应off set的反应作用,是你打斜车子时,可以进弯的主要原因。而 trail就是引导车子进弯后又能恢复直线进行的关键。
  一般MTB前叉制造商做约1.25英寸的offset,也因此,车架设计师就被限制在71°到69°的车头角度之内,努力地求取这两种相反力量的平衡,保持车子操控时车把处的轻盈感,而且不牺牲稳定性。
Offset/Trail 须知
  Trail让前轮直直地直线地前进,而前叉的offset事关车子/车头的转动、操控灵活度,两者相权的最佳平衡、折衷点是71°~70°的头管角。
---------------------------------------分割线----------------------------------------------
部分13年款DH车架角度和尺寸的尺寸图和解释(bike)
在这幅图里:
2c260a46f21fbe09cf02bca86a600cf.jpg (0 Bytes, 下载次数: 11)
12:06:14 上传
A,Head Tube Angle,车架头管角度。
B,Headtube Lengh,车架头管长度(对双肩叉应该买何种插肩有帮助)
C,Toptube Length(Horizontal),车架上管长度,或者说头管上端到座管的水平长度。
E,Seat Tube Angle,座管角度。
F,Seat Tube Length,座管长度。
H,ChainStay Length,链条驱动长度,或者说后轴距,五通到后轮距离都行。
I,BB Drop,BB与轴线的距离。
J,BB Hight, BB离地高度。
K,Stand Over Hight,站立高度,应该是车架上管最低点的离地距离,也有厂家将上管中点的离地距离作为SOH。
L,WheelBase,轮距或轴距。
M,Reach,头管上端到BB的水平距离。
N,Stack,头管上端到五通的垂直距离。
对于车架大小来说,很多人看的比较多的就是SX,S,M,L之类的统称,然而各个厂家对这几个尺码相对应的几何却完全不一样,相信很多人深有体会(比如捷安特和美利达)。那么这个时候,TTH,SOH,STL,Reach这四个值,会对衡量车架的大小会有很大的帮助。
而对于在同一种车型中,选择你喜欢的车架,那么就需要看HTA,CSL,BB Hight,WB。
比如,现在你想选择一款AM或者DH车架,然而在众多车架厂商的产品中选花了眼。那么,根据这几个几何值,可以简单的作比较。
HTA,头管角度。角度越小,前叉越趋于水平,这时候对地面冲击更敏感,人体感觉的震动更小,更适合下坡偏多的骑行方式。角度越大,车身转向更灵活,车轮滚组小。
CSL,后轮与BB距离,这个距离越小,车子对于滞空动作更灵活。地面动作如大家熟知的兔跳,更容易做到并且维持,在空中的转体动作更灵活。
BB Hight,五通离地越近,骑行重型越低,很简单。中心低,骑行和转向相对更稳。但对于大多数DH车架,为了做出更大的行程,不得不增大这一数字来保证不会在避震打底的时候,压盘触地。
WB,轴距。轴距不是越长越好,长轴距能对连续颠簸的通过性有所帮助,但是长轴距会使车身不灵活,根据赛道情况取舍就好。现在很多厂商的车架具备调节行程,车架角度,轴距的能力,很方便。
特别要说明Head Tube Length,Stand Over Hight,Reach,和Stack这四个值。
Head Tube Length,对于单肩前叉的车型来说,这个值最对是衡量你买二手的时候,剩下的头管长度是否够长。而对于DH车型来说,这个值需要考量。双肩叉,对于两肩之间的距离是有最小要求的。然而,大多数车手喜欢将更多的叉管长度往下放,拉高车头高度,减小头管实际角度,帮助下坡骑行更加顺畅(DH骑行)。但是有些车架的头管相对很短,比如Giant Glory。这时候,可能车架就不允许使用高肩的插肩,而要使用平叉肩来保证安全距离。
Stand Over Hight,这个值也是很少被人注意的值。这个值的解释就是,上管最低点的离地距离。那么可想而知,假如这个值大于你的跨高,那么可能你坐在上管上,也只能踮脚着地,甚至够不着地面。
Reach,这个值是重型车上考量比较多的值。很多人奇怪,为啥别人车架的TT值比我的长,骑上去的感觉却比我的车架要小。这个时候,就需要考虑到Reach值。因为AM,FR,DH骑行中,很多时候人并不是坐在座板上,而是站在踏板上。因此车架大小的感受更多的取决于Reach值的大小。
Stack,很多车架,特别是DJ,SS和FR车型。为了对土坡腾跃的骑行风格做优化,会将头管设计的比较高。如果你的骑行场地和骑行方式更趋向于流畅的穿越而不是飞跃土坡的模式,那么要注意不要选择Stack值偏高的车架。
c662a0ec08fa513db6bffbb3fbd966.jpg (0 Bytes, 下载次数: 11)
12:06:20 上传
大多数主流厂家DH车架的主要几何值。
(0 Bytes, 下载次数: 18)
12:07:18 上传
硬尾的从头到尾看完了,软尾的符号太多就不看了
赞!了解了不少东西
Copyright & 1998 - 2017 Tencent Inc.利用知识工程进行自行车车架设计
作者:耿忠林
欢迎访问e展厅
在竞争激烈的市场化要求下,的设计出现了以下两个特点:速度快、造型美观适用。在当代制造工艺已比较成熟的情况下,自行车的造型设计变得相当重要。知识工程(Knowledge Based Engineering,KBE)具有多种知识表示和推理决策的能力,将其运用于快速处理自行车车架的工艺结构设计、造型设计过程及决策过程,可有效处理复杂的工艺知识和各种图形知识,达到快速设计的目的。
一、KBE技术的内涵和关键技术
KBE的基本思想是在工程设计中重复利用已有的知识和经验。这些知识和经验以各种形式存在,如设计手册、工程公式、经验数据表格和专家设计经验等。KBE系统是一个知识处理系统,知识表示、知识利用和知识获取是KBE系统的三个关键技术。知识表示即怎样系统地陈述问题并使它们易于求解;知识利用中最主要的是搜索技术,怎样聪明地控制解的查找,使其不至于使用太多的时间和花费过多的计算机存储空间;知识的获取和编码则是KBE系统最重要的方面之一。
二、自行车设计概况
1.国内外自行车设计概况
有前人用Auto二次开发技术在自行车车架设计上做过研究,但是成果并不明显。其中一种实现方式是:用AutoCAD内部嵌入的一种程序设计语言AutoLisp来完成常用的科学计算和数据分析,同时又能调用几乎全部的绘图命令。使用该程序能自动完成车架简图的绘制,然后自动提取关键参数进行分析判别并反馈出最后结果,以实现优化设计的目的。
还有人在自行车CAD技术上做过参数化设计方面的研究。建立参数化设计系统的关键是建立一套描述参数和尺寸之间关系的约束方程,然后根据一组尺寸参数求解出新的设计参数。采用这种方法进行设计,仅需输入必要的参数,计算机就可自动生产出所需部件的图样。这种方案只适用于结构变化不大或按一定规律变化部件的设计与绘图。结合自行车设计的特点,这种方法有一定的可取之处。但对于造型设计复杂、变化多样的情况,则是不能满足实际设计要求的。
采用三维软件进行设计可达到缩短产品开发周期,降低设计成本的效果,还能使二维平面设计软件不容易表达的曲线和曲面在三维设计上变得容易实现,且效果直观,有利于设计人员和客户之间的直接沟通。
2 .自行车基本结构及工厂设计流程
自行车由九大部分组成,如图1所示。其中最主要的部分是车体。车体由车架、前叉、车头组件、中轴组件、鞍管组件和贴花等组成。
图1 自行车组件图车架设计是自行车设计中最关键和核心的部分,其设计主要分为前三角的设计、后叉片的设计和后三角的设计。前三角的设计包括五通、立管、头管、上管和下管的设计。后三角的设计包括平叉和立叉的设计。后叉片主要用来连接后轴、平叉和立叉。后叉片的设计应在前三角完成以后,后三角设计之前完成。车架结构如图2所示。
图2 车架结构示意图充分了解工厂工作流程将有助于在设计系统时充分考虑各部门间的配合、设计人员操作习惯和经验的积累,并有利于达到知识工程重复利用已有知识和经验的目的,图3所示为某自行车公司的工作流程。
图3 工作流程图三、知识工程在车架设计时的应用
车架CAD设计共分为选择查询、结构优化设计和快速建模造型设计三部分。整体思路是先将车架各管的中心线画出,制作成各式模版,然后进行结构调整并对设计参数进行优化修改,最后再进行管件造型设计。三部分分别采用了不同的KBE技术,取得了良好的应用效果,下面将进一步介绍各部分采用的不同KBE技术,并分析其使用原因。
1.选择查询
选择查询采用了基于实例的知识表示,在工程设计领域,它有着广泛的应用。实例蕴涵着丰富的专家知识,可以为当前的设计提供有价值的参考。
自行车车架的设计相对自由,样式多种多样,共分为11种款式。各款式中部分管件的搭接形式又不相同,因此衍生出各式不同的车架外形。从车架设计条件描述中抽取出共同的特征及特殊特征并建立筛选条件,根据这些条件能从实例库中搜索并选择出与设计要求最接近的实例,进行改进设计。实例包括骨架实例(既中心线模版)和成品实例两部分,可根据不同的用户需求选用不同的实例。
2.结构优化设计
结构优化设计包括参数化驱动、参数的程序优化求解和结构优化三部分。
(1)参数化驱动。近似实例调出后,接下来将进行参数优化修改。对结构相似的实例,只需修改其参数具体数值。参数分为关键结构参数和普通结构参数,关键结构参数用统一规划的表达式记录并保存于数据库中,普通参数则采用自动分配的表达式。参数修改通过修改表达式的值来实现参数化驱动。系统设计则能够读出实例中的关键结构参数并提供了修改工具。常用的关键结构参数主要来源于自行车行业设计标准、专家设计知识经验和生产经验,并用数据库进行管理。数据库中主要记录了部分车架关键结构参数的经验数据及实例数据。
普通结构参数的修改则提供了专用的修改拾取工具,能够拾取实体对象并读取相应的表达式,关键结构参数的修改亦可用其实现。普通结构参数通常根据客户的实际订单需要来确定。
(2)参数的程序优化求解。优化计算时,由于未知参数很多,部分设计参数采用逆运算的方法,即将未知量按设计经验假定为已知量,然后以微量增量的方式进行迭代试算,直至算出符合要求的参数为止。例如,在计算五通下垂量及已知毛坯圆管直径计算变截面管的相关参数时就采用了这种方法。
图4 圆形管变形为水滴管以变形后截面是水滴型为例,如图4所示,在假设变形后截面周长和原截面周长保持不变的条件下,其求解方程如下所示:其中,D为毛坯管直径,R1为水滴管大半圆半径,R2为水滴管小半圆半径,β为大半圆半径与竖直中心线交角。将此方程的解看作是正切曲线和一条直线的交点,循环给出β的一个初值,直至使等式两边满足一定的条件为止。代入公式:即可求得水滴管的轴向高度B。此方法并未直接以水滴管的轴向高度B为未知参数求解,而采用了过渡未知参数β进行方程求解。第二种方法是采用试算法,即一些参数必须给出,但是又不能确定,用另外一些已知的参数试算出这些参数,但这个参数以后可能还是会修改的,并且要能和其相关的对象实现关联设计。
(3)结构优化。车架设计中,后叉片是一个关键部件,如图5所示。
图5 后叉片及平、立叉装配图由于本身设计较为复杂,为了使后叉片的设计不影响后面工序的设计,将后叉片的造型设计与选用和定位设计分开进行,举例采用了自顶向下设计、自动装配和关联设计相结合的方法。首先将设计好的后叉片放入指定目录下,并采用数据库进行分类数据管理。然后将后叉片与主模版的对应装配关系抽取为一个矢量平面和两个矢量轴,这样在进行车架设计时只需按要求选用适合的后叉片即可装配到位,而位置的调整也可通过界面调整参数达到设计要求。最后的关联设计主要采用了Smart point(智能点)和UDO(用户自定义)两项技术实现。智能点用来连接后叉片和平、立叉的关键接触点,能够在后叉片位置改变或所选用后叉片改变时,实现关联对象的自动变化,并能够在一些参数不满足基本要求时自动给出提示。
3.快速建模造型设计
造型设计主要指管件的造型设计。其具体实现方式如下。
(1)在管件导引线(中心线)的不同位置按要求给出截面的轮廓形状(截面形状导引线)。车架截面形状有圆形、椭圆形、水滴型(又分正水滴、反水滴)、方形、菱形和8字形等,可以先基于KF规则创建几何建模特征和知识表达式的特性,然后采用UDF(User Defined Feature)用户定义特征建立装配件,即将截面形状画好作为一个装配件,做截面时只需将相应的截面调出即可,截面的形状参数则通过读取相应的知识表达式达到快速修改的目的。
(2)通过扫描将管件外形做出。扫描中心法矢的运动轨迹是管截面形状引导线,此引导线不做成整个的封闭曲线,而是将各位置上的引导线分割为同段数的曲线且使对应曲线的切线方向一致,否则扫描出的管件容易扭曲。此时做出的是一薄壁管。
(3)加厚形成管件的厚度。
(4)连接管件间相交部分的剪切。当用户拖动管件导引线时,管件能够关联变化。
采用此实现方法充分体现了对知识和规则的重用性。对象间的关联设计用UDO的方法,将管件的一些列数据记录到UDO中,实现完成了管件的自动剪切、自动标注、尺寸检查、BOM表的自动生成和模具查询等关联设计。图6所示是用开发的车架CAD模块设计出的减震自行车车架图。
图6 减震自行车车架图四、结束语
运用知识工程,使自行车车架设计工作从原来需两天时间,缩短到目前的两个小时,大大缩短了车架设计的开发时间,方便了设计方案的交互设计、修改和验证,更有利于二次利用时缩短设计再修改的时间,使企业在激烈的市场竞争中赢得主动。本例的成功同时也表明了知识工程在中小型企业内应用已成为可能,知识工程将使企业具有更大的竞争力。此外,知识工程还允许用户保存那些在实际应用中有用的工程知识,当需要时能很快找出并重复利用。
文章来源:《CADCAM与制造业信息化》(end)
文章内容仅供参考
查看更多摩托车/自行车相关文章:
· newmaker ()· newmaker ()· 朱惠玉 孙忠良 宰守香 ()· newmaker ()· 江西洪都航空工业集团 廖杰 ()· newmaker ()· 韩伟 唐海波 张力英 于宏图 曾巍 ()· newmaker ()· 摩托车技术 艾信友 ()· 天津大学 陈益广 王晓远 ()
查看相关文章目录:
佳工网友 xiaorenxiong
于 21:53:00评论说:
对自行车部分设计少了.如轮子.我认为数学建模很有用.希望可以对轮子运动作模型分析.现在有各种车轮.赛车轮和普通轮就不一样.请做出解释.
对 摩托车/自行车 有何见解?请到
畅所欲言吧!
佳工机电网·嘉工科技

我要回帖

更多关于 自行车车架尺寸 的文章

 

随机推荐