有没有代做LDO整体版图设计是什么的,急用

一种低压差的LDO稳压集成电路设计(答辩演讲ppt)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
一种低压差的LDO稳压集成电路设计(答辩演讲ppt)
上传于||文档简介
&&微​电​子​学​专​业​论​文​答​辩​演​讲​P​P​T​,​内​容​简​单​,​仅​供​参​考​-​-​献​给​我​的​老​师​于​建​海​博​士
大小:257.50KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢  推荐期刊投稿
&&&免费论文
&&&收费论文
&&&浏览历史上传用户:grkpbhtupm资料价格:5财富值&&『』文档下载 :『』&&『』学位专业:&关 键 词 :&&&&&权力声明:若本站收录的文献无意侵犯了您的著作版权,请点击。摘要:(摘要内容经过系统自动伪原创处理以避免复制,下载原文正常,内容请直接查看目录。)在便携式装备的电源治理范畴,须要片上电源转换器来应对分歧的供电请求,而高压差线性稳压器(LDO,low一dropout voltage linear regulator)应用高压差、低噪声等综合优势在电源转换器中锋芒毕露,并逐步成为一种成熟的技巧。本文设计的LDO稳压器运用于笔记本智能电池治理芯片,锂离子电池的电量会跟着应用时光而明显下降,须要片上LDO线性稳压器在锂离子电池从4。5到28V宽输出规模内更改时能输入准确的1。8V,并知足1mA一20mA负载电流规模内的电源稳固。本文起首引见了LDO线性稳压器的成长概略、拓扑构造和任务道理,并针对稳压器的负反应环路停止频率稳固性剖析、直流特征和瞬态呼应剖析,在斟酌稳压器各模块设计请求和参数调和关系后,设计了一款将4。5~28V高电源电压转换为1。8V的LDO线性稳压器。其次,为了下降高压管设计带来的功耗和疆土面积的成绩,采取预稳压电路将输出高压降为粗略的3。3V作为外部高压模块的供电电压,因为预稳压LDO的主顶点在稳压电路的外部发生,是以采取密勒赔偿的办法便可确保预稳压LDO的稳固性。最初在3。3~1。8V焦点LDO的设计中,为了确保1mA~20mA负载电流变更规模内的稳固性,电路中采取了片外2。1uF电容肯定主顶点的地位,并应用电压缓冲级隔离前级缩小级的高输入阻抗和调剂管栅极电容以免低频顶点的发生,在差分输出级以后参加RC赔偿收集,应用附加零点来进步两个低频顶点惹起的相位丧失,在单元增益频率以外,应用相位超前赔偿和ESR赔偿频率赔偿办法来赔偿高频顶点。针对TSMC0。5umHV40V工艺模子,完成了电路与疆土设计,本论文设计的LDO完成的功效目标为输出电压规模(4。5~28V),输入1。8V稳压值,负载电流20mA,正常任务的温度规模(一40~85℃),瞬态呼应的输入超调量在40mV之内,线性调剂率为0。00083%,负载调剂率为0。0026mV/mA,静态电流为126~136uA。疆土面积为1300um×2000um。Abstract:Comprehensive advantages in power management field portable equipment needs on chip power supply converter to deal with different power supply request, and high voltage difference linear voltage regulator (LDO, low dropout voltage linear regulator) with high pressure difference and low noise in power converters center mount clear, and gradually become a kind of mature skills. This paper designs the LDO regulator used in the smart battery management chip, lithium ion battery power will be significantly decreased with the application of the time, it is necessary to chip on the LDO linear regulator in the lithium-ion battery from 4. 5 to 28V wide output size can be changed when the input is accurate 1. 8V, and content 20mA a 1mA load current in the scale of power supply. This paper introduces the LDO linear regulator growth roughly, topological structure and working principle, and for negative response loop regulator stop frequency stability analysis, DC characteristics and transient response analysis, the regulators consider each module design requirements and parameters of the harmonic relationship between design a 4. 5~28V high power supply voltage conversion is 1. LDO 8V linear regulator. Secondly, in order to reduce high pressure pipe design brings the power and territory area results, take pre regulator output pressure drop is roughly 3. 3V as an external high-voltage module of the power supply voltage, because the main peak of the LDO regulator circuit in the external occur, is to take the way to compensate the can ensure the stability of the pre regulator LDO. Initially in 3. 3~1. 8V focus LDO design, in order to ensure the stability of the 1mA~20mA load current change in the size of the circuit to take out 2. 1uF capacitor certainly the primary vertex position, and applied voltage buffer stage isolation of reduced level of high input impedance and dispensing pipe gate capacitance to avoid low-frequency vertex occurred. After differential output stage in RC compensation collection, using additional zeros to progress two low-frequency vertex cause phase loss, outside the unit gain frequency, phase advance compensation and ESR compensation frequency compensation method to compensate the high frequency vertex. For TSMC0. Completed the design of circuits and territory process 5umHV40V mold to complete the design of LDO effectiveness of target output voltage scale. 5~28V), enter 1. 8V voltage regulator, the load current 20mA, the normal task of the temperature scale (a 40~85), the transient response of the input of the overshoot in the 40mV, the linear swap rate is 0. 00083%, load swap rate is 0. 0026mV/mA, quiescent current is 126~136uA. The territory area is 1300um * 2000um.目录:摘要4-5ABSTRACT5第1章 绪论8-14&&&&1.1 课题背景8-9&&&&1.2 电压调整电路的简介9-11&&&&&&&&1.2.1 电压调整电路的性能需求9&&&&&&&&1.2.2 电压调整电路的分类9-10&&&&&&&&1.2.3 电压调整电路在笔记本电池管理中的应用10-11&&&&1.3 电源管理市场的发展与研究现状11-13&&&&&&&&1.3.1 市场发展11-12&&&&&&&&1.3.2 技术发展12-13&&&&1.4 本文研究内容13-14第2章 低压差线性降压变换器的基本理论研究14-32&&&&2.1 低压差线性稳压器的结构14-17&&&&2.2 低压差线性稳压器的工作原理17-18&&&&2.3 低压差线性稳压器的主要参数概念18-21&&&&&&&&2.3.1 线性18-19&&&&&&&&2.3.2 压差19-20&&&&&&&&2.3.3 静态电流20&&&&&&&&2.3.4 转换效率20-21&&&&2.4 低压差线性稳压器的交流特性与频率补偿21-30&&&&&&&&2.4.1 低压差线性稳压器的AC 分析21-25&&&&&&&&2.4.2 低压差线性稳压器的频率补偿方法25-30&&&&2.5 低压差线性稳压器的瞬态响应30-31&&&&2.6 低压差线性稳压器的直流特性31&&&&&&&&2.6.1 线性调整31&&&&&&&&2.6.2 负载调整31&&&&2.7 本章小结31-32第3章 低压差线性稳压器的电路设计与仿真32-56&&&&3.1 线性稳压器整体电路结构设计32-33&&&&3.2 预调压模块设计33-41&&&&&&&&3.2.1 启动电路及PTAT 电流产生电路33-35&&&&&&&&3.2.2 基准电压产生电路35-39&&&&&&&&3.2.3 运算放大器及调整管输出39-41&&&&3.3 带隙基准模块设计41-44&&&&&&&&3.3.1 带隙基准的直流仿真42-43&&&&&&&&3.3.2 带隙基准的交流仿真43-44&&&&3.4 线性稳压核心模块设计44-53&&&&&&&&3.4.1 电路整体结构及设计考虑44-45&&&&&&&&3.4.2 误差放大器的设计45-46&&&&&&&&3.4.3 缓冲级的设计46-47&&&&&&&&3.4.4 过流保护电路的设计47-48&&&&&&&&3.4.5 电路稳定性设计48-53&&&&3.5 线性稳压器整体仿真53-55&&&&3.6 本章小结55-56第4章 低压差线性稳压器的版图设计与后仿56-61&&&&4.1 高压版图概述56-58&&&&&&&&4.1.1 高压器件的结构56-57&&&&&&&&4.1.2 高压器件的保护57&&&&&&&&4.1.3 高压版图布局57-58&&&&4.2 低压差线性稳压器的版图设计58-60&&&&&&&&4.2.1 预稳压电路的版图设计58&&&&&&&&4.2.2 带隙基准模块的版图设计58-59&&&&&&&&4.2.3 核心稳压模块的版图设计59-60&&&&&&&&4.2.4 整体LDO 版图60&&&&4.3 本章小结60-61结论61-62参考文献62-66致谢66分享到:相关文献|

我要回帖

更多关于 版图设计是什么 的文章

 

随机推荐