pe高压塑料怎么配比能如何降低高压成本质量又不差

PE塑料是怎么配料的,求解答?_百度知道
PE塑料是怎么配料的,求解答?
提问者采纳
6,多采用釜式反应器。分为高压法,耐磨及传动零件。
  高压法 用氧或过氧化物等作引发剂、压力(4~5MPa)较高。乙烯经二级压缩后进入反应器。一般步骤有催化剂的配制,可以得到不同分子量分布的产品。
  低压法 分淤浆法。催化剂有铬系和钛系两种,用高速乙烯循环以维持床层流态化。反应器的压力约2MPa、聚合物的分离和造粒等,但乙烯和聚乙烯均溶于溶剂中、溶液法和气相法三种。
  所用聚合反应器有管式反应器(管长可达 2000m)和釜式反应器两种,也称为线型低密度聚乙烯、溶液法和气相法,可兼产高。
  ②溶液法 聚合在溶剂中进行,在压力100~300MPa。由聚合釜出来的聚合物淤浆经闪蒸釜。淤浆法聚合条件温和。但气相法在产品质量及品种上有待进一步改进、低压法,并排除聚合反应热。生产过程中还包括溶剂回收,氢气作分子量调节剂,常用烷基铝作活化剂。低压法就其实施方法来说,操作费的1&#47,电绝缘性(尤其高频绝缘性),温度85~100℃。特点是聚合时间短。
  中压法 用负载于硅胶上的铬系催化剂。近年来、中,聚合压力都在2MPa以下,生产强度大。 
  ③气相法 乙烯在气态下聚合,而溶液法和气相法不仅可以生产高密度聚乙烯。釜式法流程的单程转化率20%~25%。高压法用来生产低密度聚乙烯、中压法三种,低压聚乙烯适于制作耐腐蚀零件和绝缘零件,熔融状的聚乙烯在加入塑料助剂后挤出造粒。气相法是生产线型低密度聚乙烯最主要的方法。管式法流程的单程转化率20%~34%;3,但随着生产技术和催化剂的发展、温度200~300℃及引发剂作用下聚合为聚乙烯,在环管反应器中,气相法省去了溶剂回收和聚合物干燥等工序。采用不同的聚合釜串联或并联的组合方式PE塑料即聚乙烯塑料、溶剂精制等步骤、乙烯聚合,能较好地控制产品的性质、低密度聚乙烯,生产的主要是高密度聚乙烯、低三种密度的聚乙烯,且比溶液法节省投资15%和操作成本10%。为传统高压法投资的30%,单线年生产能力100kt,用此法生产的聚乙烯至今约占聚乙烯总产量的2&#47,反应物经减压分离,具有耐腐蚀性,生产高密度聚乙烯,分子量分布窄,这种方法开发得早,还可通过加共聚单体;超高分子量聚乙烯适于制作减震;但溶液法所得聚合物分子量较低,除溶液法外,各种低压法工艺发展很快。反应温度(≥140℃),其增长速度已大大落后于低压法,使乙烯在中压下聚合,然后去造粒,一般采用流化床反应器,易于操作,固体物含量较低,单线年生产能力180kt,使乙烯聚合为低密度聚乙烯的方法,使未反应的乙烯回收后循环使用。
  ①淤浆法 生成的聚乙烯不溶于溶剂而呈淤浆状,有淤浆法,生产中。淤浆法主要用于生产高密度聚乙烯;高压聚乙烯适于制作薄膜等,由贮罐定量加入到床层内。生成的聚乙烯从反应器底部出料、气液分离器到粉料干燥机。中压法仅菲利浦公司至今仍在采用,反应体系为均相溶液。因而得到了迅速发展
提问者评价
来自团队:
其他类似问题
为您推荐:
其他2条回答
不需要再配。颜色找颜料店配颜料粉或色母,生产过程因产品要求需适当调整高低熔PE的比例或选择合适流动性的PE同楼上PE本身就是一原料
PE本身就是一种原料不用配啦,如果是要配色就找专业配色的厂家来就行啦,昆山多友贸易有限公司,就不 错哦
您可能关注的推广回答者:回答者:
pe塑料的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁中国国际:成本下降明显塑料期价延续弱势|PE|期货|现货_新浪财经_新浪网
中国国际:成本下降明显塑料期价延续弱势
  要点:
  ○延长中煤和中煤榆林两套装置投产既带来供应压力,又带来大量低成本货源,尤其是大量试车料在市场销售给现货带来较大冲击,价格重心和成本重心下移明显。
  ○受原油持续下跌影响,石脑油路线的PE生产成本明显下移,未来成本有望触及10500元/吨,有可能进一步下移。未来乙烯存在下跌要求。
  ○期货深贴水抑制其下跌空间,短期受需求拉动,行情窄幅波动,后市价格继续下行
  ○北仑港罢工影响局部供应和进口,关注进一步动向。
  ○去库存进展缓慢,当前库存处于过去三年的中高水平,交割货源成为短期关注重点。
  ○LLDPE和PP期货价差收窄,PP交割制度影响短期价差,后市受基本面和资金影响,价差有望继续扩大。
  一、煤化工低成本冲击现有价格
  延长中煤和中煤榆林两套装置投产并对外销售,给市场传递的信号意义重大,一是改变了市场预期,二是增加了新的供应,低成本货源增多。
  之前的煤化工聚乙烯只有神华包头30万吨产能,其中线性和低压各一半。此次,煤化工聚乙烯产能60万吨,加上30万吨渣油裂解装置共计180万吨产能。考虑到9月底宝丰能源30万吨全密度投产,煤化工聚乙烯产能突然急剧放大。再考虑到煤化工聚丙烯的巨大产能,市场预期趋于悲观。如果延长中煤和中煤能源这两套装置保持70%的开工率,8月份PE新增供应将超过5万吨,而整个8月份神华包头正常生产,再加上之前的试车料,煤化工的PE供应突然大幅放大。
  煤化工聚乙烯成本低廉。笔者今年曾两次跟随大商所和中国石油与化学联合会先后去华东、西北考察。在宁波与富德能源充分接触,在榆林和宁东地区与当地的煤化工企业进行充分沟通。据推算煤制聚烯烃当前的成本大概在7400元/吨,竞争优势明显。因此,延长中煤和中煤榆林的产品在占领市场前期可能会考虑相对低价策略和灵活的销售政策,这会给当前的现货市场带来较大冲击。
  另外,大量试车料的出现也是重要的利空因素。上述两套煤化工装置的主要特点就是产能大,试车时间较长,产生的不合格料多。据笔者不完全统计,8月份以来,延长中煤通过上海石油交易所西部交易中心竞拍了7900吨线性试车料,如果考虑高压试车料,及中煤能源的试车料。这两套装置所产的聚乙烯试车料应该超过1.5万吨,这些试车料在终端市场――山东销售非常抢手,主要是价格低。当前是华北地区地膜需求旺季,主要是蒜膜。还而地膜对料的质量要求不高,向合格品中掺入试车料对薄膜的使用功能没有影响,却能大大降低成本。因此,大量试车料带来的“劣币驱逐良币”效应,对现货市场冲击明显。
  图1-1: 煤化工装置开车进展
图1-2:延长中煤线性在上海石油交易所竞拍细节
  资料来源:上海石油交易所 国际期货产业中心
  二、石脑油路线成本下降明显
  6月中旬原油和石脑油冲高遇阻,近一个多月一直震荡下行。WTI原油由最高的107.68美元/桶跌倒最低92.5美元/桶,最大跌幅超过15美元,布伦特原油最大跌幅也接近15美元/桶。目前全球原油供应充分,地缘政治事件相对平稳。考虑到俄罗斯与西方国家之间的政治角逐,未来原油价格仍将弱势盘整或震荡下行。
  原油走低,直接带动石脑油震荡走低。二者相关性强,而石脑油走低将明显降低聚乙烯的生产成本。按照石脑油折算出的动态成本,聚乙烯当前的生产成本大概在11100元/吨。较上月同期下跌600-700元/吨。后市原油保持弱势将是大概率事件,因此聚乙烯真实的成本将会在1-1.5个月以后显现出来。根据对原油和石脑油的判断,聚乙烯的生产成本跌到10500元/吨将是大概率事件,如果该成本支撑不住,下一个支撑区域将是10000元/吨。
  从原油和石脑油的价差看,二者间价格传导较为充分。但是乙烯和石脑油价差处于历史高位。当前600-700美元/吨的价差意味着乙烯利润非常丰厚,后市乙烯供应预期明显增加,价格存在下跌要求,乙烯下跌将明显降低聚乙烯生产成本。
  图2-1: 原油、石脑油近期下跌明显
图2-2:聚乙烯动态生产成本大幅走低
  资料来源:国际期货产业中心
  图2-3: 原油石脑油价差基本合理
图2-4:乙烯石脑油价差处于历史高位
  资料来源: 国际期货产业中心
  三、期货深贴水抑制下跌空间
  近期随着煤化工试车料和合格品对现货的冲击,市场预期较为悲观,期货价格比现货反映更为充分。据笔者统计,当前期货主力合约价格较现货出厂价格贴水明显。较华东和华南贴水在600元/吨,较华北和东北贴水350-400元/吨。其中较中沙222WT贴水450元/吨,较神华线性贴水250元/吨。需要说明的是,神华线性反映的是煤化工的合理价格,体现了期货价格的低端行为,222WT反应的是石脑油路线的市场价格,体现的是相对高端的价格。华东和华南的现货价格较高,基本不涉及交割,对期货的支撑作用相对有限。
  但是目前贴水幅度较大,说明现货未来的价格已经部分体现在期货预期之中,在1505价格中体现的更为明显。因此,期货继续下跌的深度受深贴水支撑明显,其下跌的幅度将被明显抑制。
  图3-1:LLDPE期货相对华东现货贴水明显
图3-2:LLDPE期货相对华南现货贴水明显
  资料来源: 国际期货产业中心
  图3-3:LLDPE期货相对神华线性贴水
图3-4: LLDPE期货相对华东现货贴水适中
  资料来源:国际期货产业中心
  四、北仑港罢工影响局部供应及进口
  始于8月18日的宁波北仑集装箱车队罢工一直持续,影响宁波最大的货运港口-北仑港。该事件的起因有两个,一是运输指导价长达8年未作调整,二是运输监管部门要求取消黄皮车辆。目前第一个问题已经基本解决。宁波集装箱运输协会称,从日起,运输指导价普遍上涨12%。但是,第二个问题仍处于僵持阶段。黄皮车特指体型较大,车容量高于普通运输车的一种运输工具。一般容易超载,对路基有一定危害,在运输过程中有一定的安全隐患。如果黄皮车被取消,采用普通运输车辆,货物的运输成本增加。
  此次罢工事件已经升级为暴力事件,部分参与者失去理性,扰乱物流车队的正常运行。事件持续的时间长短对聚烯烃的物流和局部资源量影响较大。短期看,当地市场流通资源会减少,进口货源减少,支撑现货。中期看,运输成本增加会传导到终端,对上游生产企业和中间贸易商及下游终端用户均不利。
  图4-1: 罢工对宁波聚烯烃资源的影响
无法运出,只能在产区周边消化
无法运出,只能在产区周边消化
宁波保税区
无法提货,资源无法流通
国外进口料
无法抵港,进口货源受限
  资料来源:金银岛 国际期货产业中心
  五、去库存进展缓慢
  当前港口去库存压力较大,高于2013年、2012年同期。截至8月22日,上海港库存15.6万吨,青岛库存1万吨,黄埔港库存5.7万吨,天津港库存5.6万吨。天津交割库和青州交割库线性库存在7万吨左右,石化库存维持在86-90万吨之间。中国聚烯烃库存在16天,处于过去三年9-19天的中高水平。
  当前库存的核心是交割库的线性,数量偏大。这些库存在9月中旬以后要释放到市场上去,将带来供应压力。届时港口库存和石化库存都将承压。
  图3-10: PE去库存化进展缓慢
  资料来源:IHS
国际期货产业中心
  六、LLDPE与PP的套利
  PP上市以来,和LLDPE的价差先扩大后缩小,出现了明显的“抛物线”走势。前期由于LLDPE持仓量较大,资金关注度高。市场策略大多采取多LLDPE空PP的方式。从基本面来看,LLDPE确实好于PP,从煤化工的冲击来看,PP受到的利空影响更大一些。
  但是,煤化工投产预期在PP市场提前反应,许多PP装置检修,拉丝料供应有限,而且由于对后市预期悲观,贸易商积极处理库存,社会和企业库存均处于较低水平。更重要的是PP期货的交割制度,由于华北地区贴士250元/吨交割,使得交割环节不会出现低价货源。但是PP期货一直处于贴水状态,真正的套保压力不大,这会导致交割库没有可供交割的货源,期货向现货回归。因此,在1409合约价格之前PP价格会保持相对强势,PP与LLDPE的价差一直处于缩小状态,但幅度有限。目前华北市场PP与华东和华南价差在150-200元/吨,低端煤化工PP没有交割的意愿。华东和华南地区LLDPE与PP的价差保持在150-200元/吨,考虑到PP的预期更弱,当前1501期货价差稍微偏大,但是继续收窄空间有限。
  操作上,在价差在200-300之间,可采取买LLDPE卖PP的套利。逻辑一是LLDPE的基本面仍然好于PP,二是煤化工的影响PP偏大,三是1409合约交割后,交割因素消失,区域贴水的影响弱化。套利目标利润500点左右。
  图3-1: LLDPE与PP主力合约价差
图3-2: LLDPE与PP1月合约价差
  资料来源:国际期货产业中心
  七、结论
  综合来看,1501合约短期受需求旺季支撑和低端货源供应偏多的共同作用,短期有望窄幅弱势震荡,震荡区间。震荡完毕之后,重心继续下移。价差在300元左右,买LLDPE卖PP的套利可行,目标利润500点。
  中国国际 高春民
新浪声明:新浪网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不构成投资建议。投资者据此操作,风险自担。
文章关键词:
&&|&&&&|&&&&|&&
您可通过新浪首页顶部 “”, 查看所有收藏过的文章。
请用微博账号,推荐效果更好!
看过本文的人还看过做hdpe管道专用颗粒,熔融指数要求0.2,用什么破碎料造粒,怎么配比成本最低
做hdpe管道专用颗粒,熔融指数要求0.2,用什么废塑料造粒,怎么配比成本最低
09-12-14 & 发布
您好关键词:超高分子 量聚乙烯 工程塑料 1 引言    UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。
 UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。
 UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。
 UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。 2 UHMWPE的成型加工
 由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 2.1 一般加工技术
 (1)压制烧结
 压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。
 (2)挤出成型
 挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。
 60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。
 (3)注塑成型
 日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。
 (4)吹塑成型
 UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 2.2 特殊加工技术
 2.2.1 冻胶纺丝
 以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。 UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。
 UHMWPE纤维是当今世界上第三代特种纤维,强度高达30.8cN/dtex,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
 2.2.2 润滑挤出(注射)
 润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。
 (1)自润滑挤出(注射)
 UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。
 有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。
 (2)共润滑挤出(注射)
 UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见3.2.1)。
 如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 2.2.3 辊压成型〔1〕
 辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变, 有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 2.2.4 热处理后压制成型〔8〕
 把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 2.2.5 射频加工〔9〕
 采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 2.2.6 凝胶挤出法制备多孔膜〔10〕
 将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。 3 UHMWPE的改性 3.1 物理机械性能的改进
 与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 3.1.1 填充改性
 采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。
 玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 3.2.1 交联
 交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。
 (1)过氧化物交联
 过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。
 UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。
 国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为0.25%时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。
 (2)偶联剂交联
 UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。
 硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。
 (3)辐射交联
 在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。
 用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。
 有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 3.2 加工性能的改进
 UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。 为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是2.2.2中介绍的润滑挤出(注射)。 3.2.1 共混改性
 共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。
 (1)与低、中分子量PE共混
 UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加 工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。
 (2)共混形态
 UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。
 Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。
 (3)共混物的力学强度
 对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 3.2.2 流动改进剂改性
 流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。
 用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。
 北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(0.6%~0.8%)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。
 另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 3.2.3 液晶高分子原位复合材料
 液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。
 用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 3.3 聚合填充型复合材料
 高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。
 与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。
 采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。
 美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,1.3MPa且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 3.4 UHMWPE的自增强〔27、28〕
 在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。 4 UHMWPE的合金化
 UHMWPE除可与塑料形成合金来改善其加工性能外(见3.2.1和3.2.3),还可获得其它性能。其中,以PP /UHMWPE合金最为突出。
 通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。 PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。
 为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。
 EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。
 另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。 5 UHMWPE的复合化
 UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。
 在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。 参考文献: 〔1〕 钟玉荣,卢鑫华.塑料〔J〕,):30 〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1 〔3〕 杨年慈.合成纤维工业〔J〕,):48 〔4〕 JP 63,161,075〔P〕 〔5〕 Plast.Technol.〔J〕,):8
请登录后再发表评论!

我要回帖

更多关于 pe高压膜 的文章

 

随机推荐