nt3看ipad看不了视频怎么办一直震怎么办

只需一步,快速开始
后使用快捷导航没有帐号?
社区广播台
查看: 2441|回复: 1
在线时间84 小时最后登录威望0 金钱210 交易币0 金币热情30 度注册时间阅读权限30帖子记录主题精华0积分106UID584701
一星会员, 积分 106, 距离下一级还需 94 积分
威望0 热情30 度交易币0 金币注册时间积分106帖子主题记录
本帖最后由 黃飛鴻 于
04:15 编辑 6 E# a$ M- H5 J; n5 C
8 D) z3 ?1 B: Y8 @& _- Y% N3 ~) g
麦克风是什么?对于录音师来讲,麦克风就像男人的JJ。麦克风是所有的录音过程的最直接也是最重要的环节,就象JJ一样永远在前面冲锋陷阵。其余的环节如效果器,调音台,录音设备就如同人的腰子,睾丸等等,腰再好,JJ不勃起,你啥事也别想干。同样的道理,你别的设备研究的再透彻,不会用麦克,你也不可能录好音。 9 a3 S5 X( [% y+ D) {6 O
. R, V4 Y2 [* M( E
现在的新手学音频技术,往往是从CUBASE等软件入手,下载了一堆巨大的音色和一堆莫名奇妙的效果器,很少有人关心麦克风这个最原始的环节,最多有人偶尔问问:这个牌子的麦克风怎么样?和U87差多少之类的问题。却很少有人问,这个麦克风是什么样的麦克风?应该怎么用?为什么这么用?为什么不那么用? 9 P; W$ q+ Y3 n% D! Q1 G( A
. j% c' g2 L# z) G3 j3 `
好的录音占整个音频制作过程的百分之七十的分量,而麦克风的选择和使用在录音过程则占到百分之七十左右的分量。由此可见,麦克风在音乐制作中的重要性。有人要说,老子有钱,买它一箱U87,或者挑最贵的买,随便怎么用效果都好。请记住,对于麦克风,有一条定律就是:没有最好的,只有最合适的。在某些情况下,U87用起来不如30块钱一根的步步高。 , `+ T5 {% x( _" n* t' z
今天首先讲的是麦克风的分类,麦克风的分类有两种,一种是根据声电转换方式来区分,一种是根据音头构造来区分。 ) B( a& \/ _: }9 @+ ~" L# g* s
根据声电转换的方法我们可以将麦克风分类为:
一:动态麦克风:依靠线圈或者铝带在磁场中的震动产生电信号的麦克风。 $ \% S9 X9 N4 }0 q' H8 z
动态麦克风又分为两大类:
1,动圈麦克风
2,铝带麦克风 5 ]4 }8 T( R2 p3 x! [3 M2 w( @
二:电容麦克风:依靠震膜与电容背板在震动中的不同距离来产生电信号的麦克风
电容麦克风又按震膜大小区分为大震膜和小震膜。又根据电容背板分为真电容和极柱体麦克风。又可根据信号放大电路分为电容和电子管麦克。又根据信号平衡整流方式分为变压器平衡电容麦克风和非变压器平衡电容麦克风。
三:压电麦克风 . P/ G- S& P&&^. T2 O
四:电阻麦克风
其中压电麦克风通常用于电箱吉他拾音,电阻麦克风主要用与电话。两者的频响范围很窄,所以在教程里不进一步介绍
根据音头构造我们可以将麦克风分类为:
一:压力接受式(封闭式):震膜后的音头为封闭式,震膜只有一面可以接受声压。 & u* R' o& H3 t: X( l
二:压力角度接受式(开放或半开放式):震膜后的音头为开放或半开放式,震膜两面都可感应声压。未完持续 * \8 }$ `" O8 w# u, D% Q
&&g: |1 T$ D& Z2 o6 P; K' [
封闭式音头是只有一面能感应到声压的音头。来自正面的声压直接到达震膜,来自背面的声压绕过音头外壳,也在正面被震膜感应。所以封闭式音头的指向性是全指向性。当然随着频率的声高,指向性会从逐渐全指向变为胖心型,心型,超心型。所以大多数厂家在标明指向型时回用不同的虚实线表明话筒在不同频率段的指向型,全指向话筒通常指话筒在1KHZ时的指向为全指向,所以全指向话筒在使用中仍然要注意正反。
半开放式音头则根据开放程度的不一,产生话筒的心型,超心型指向。以心型话筒为例,音头低壳允许声压透过,使从180度角度穿来的声波,在透过低壳到达震膜背面和从正面绕过外壳到达震膜正面的压力相当,从而完全抵消,而使从180度的声音完全过滤,从而产生心型指向。 ) x4 q* O& Q( w+ B
" l: P6 K0 b4 z$ c0 O0 L
全开放式音头则产生8字型指向,原理是从90度或270度(侧面)传来的声波分别绕到震膜的正反面后,在震膜的两面产生同样的声压,完全抵消。
. ?2 B$ o1 I& R7 A" B
很多小震膜电容麦克风配有不同的音头可供选择,如AKG的SE300B等,在需要不同种类音头的时候直接拧下来换上一个就成。而很多大震膜电容麦克风的指向性选择则是通过两个背靠背的心型指向音头产生的信号叠加处理完成的,具体叠加方式入图。
5 S2 p. N1 T&&C) R/ ^&&V8 c
麦克风的音头构造的意义不仅仅体现在指向性上,还体现在音色和效果上。封闭式音头拥有更好的自然纵深感,同时在低音部分有优良的表现。而半开放或开放式音头则会产生近讲效应,在舞台上可以让歌手方便控制自己的音色。
名词解释,近讲效应:随着音源和音头距离的接近,低音部分明显声高 0 L. n- S- b7 h& s- z
+ ?. w+ }! v7 V: E9 }' t
动圈麦克风
$ U- `8 l, a6 c* ]2 ^
大家都知道,录音棚里录人声基本都用电容麦克风,有人说因为电容麦克风专业,那为什么舞台上不用?
动圈麦克风是依靠震膜上的线圈在磁场中的震动产生电信号的麦克风,因为线圈始终有一定的重量,所以动圈麦克风在感应到震动产生电流时都需要一定的“起始”时间,在声压震动结束后都有一定的“惯性震动”时间。所以动圈麦克风的频响不如电容麦克风平直。
由于动圈麦克风本身没有信号放大电路,依靠线圈在磁场中产生的电压是非常可怜的,大约只有2到5毫伏,而电容麦克风通常输出电压为10到30毫伏。所以动圈麦克风没有电容麦克风那么灵敏。灵敏既是好事也是坏事,在录音棚里,高灵敏度能捕捉到更多的细节,在舞台上高灵敏则创造了低躁和啸叫。
6 V9 X" w3 D5 C7 ~. ?
动圈麦克风的另一个优点是他的最大声压值很高,可达到150dB到160dB,所以可以用于在声压很高的情况下使用,比如近距离录制管乐器,鼓,吉他贝司音箱等。如果在近距离用电容麦克风录制以上乐器的话,你会得到一堆失真的暴音。注意区分最大声压值和动态范围的概念,最大声压值等于动态范围加低躁 7 s: l9 c+ w7 @# g
8 _* i1 l+ |; L$ F# |
通常动圈麦克风因为音头和外壳产生的共振,会在100MZ和3KHZ附近产生两个小峰尖,又因为本身震膜的重量对高频表现不佳,在16KHZ后有严重的衰减。这个频响正符合低鼓EQ上我们想要的,所以有很多特殊的低鼓用动圈麦克风能把很普通的低鼓直接录出很好的音色。 6 d/ N2 ?1 B" L7 W# }
; T3 |&&Q+ _: ]1 _
动圈麦克风的另一大优势是结实耐造。歌手在舞台上一激动,趴,麦克摔了。没事, 拣起来继续唱。鼓手不小心一锤子砸麦上了,没事,继续打。你换一电容试试,录音师得心疼死。 2 @9 H! }, |# T0 C& U- Z
$ P&&s4 e2 P% |+ n2 u0 k( v
说到心疼,动圈麦克的价格的确和电容有天攘之别。在中国产的电容麦克冲击世界市场前,几乎没有一根大震膜电容麦售价低于1万人民币,而一根非常不错的动圈麦克风的售价往往也就只有人民币2000不到。 " G; {: w1 j7 @5 E2 j
动圈麦克风大多带有指向性,用于舞台上减低啸叫和环境噪音。所以音头大多是压力角接受式,所以大多数动圈麦克风具有严重的近讲效应。近讲效应在舞台演唱中,作为歌手一个能实时控制的EQ,有其方便的一面,但在广播录音等场合却是个严重的麻烦事。所以有那么一些动圈话筒是频响平直,几乎没有近讲效应的,如EV的RE 20。
- Z' H' c% o* M3 l: b5 ]' I
动圈麦克风也有个别的是全指向的,在乐队现场录音和扩音中常常是录音师的秘密武器,录出的乐器非常有层次感,要知道,在后期通过效果器调整出的层次感是远不如现场直接录得的层次感的。 ! `/ A7 C# v. O
列出以下几根录音师不得不知道的动圈麦克风,不知道的去GOOGLE上搜索一下各自的特性及用法,默记20遍。 ! R: U+ [4 Y) v/ A5 a2 a
SHURE:SM或BETA系列,重点是52,57,58。52是标准的低鼓麦,57是标准的乐器或者音箱拾音卖。58可以说是全世界卖的最多的一支舞台用人声麦,卖了有40年左右,仍然畅销。 5 Z7 g! E3 M! Y4 b
SENNHEISER 老MD系列 421U,441,新的EVOLUTION系列,老的 E6系,新的E9系,录音师买起来都是一箱箱的买,一套套的买。
AKG的动圈卖的品种很多,可我用过的不多,但最著名的D112是录音师对付便宜低鼓的不二法宝。无论津宝还是大名,通通能录出牛声。当然摆位和鼓的调整也很重要。 / ~" m' ?% `&&i: A
EV最著名的就是那根RE 20了,这两年好像出了后续款,但似乎骂声一片。如果是广播录音,就RE20吧。
NEUMANN出的动圈不多,但近年也出了根有根用于广播录音的动圈麦克风,BCM 705,据说近讲效应的消除不如RE20,别的情况不明。
铝带话筒 # [: ~& s% `9 T% H2 }
现在这年头知道铝带话筒的人越来越少了,铝带话筒,顾名思义,是依靠一根很小的铝带作为震膜,依靠其在磁场中的震动产生电流,再经过变压器变压变阻,产生可进入话放的麦克风信号。
铝带话筒的历史悠久,在电容话筒出现前,30年代所有的录音棚都拥有几根铝带话筒作为录音的主要设备。最著名的就是AEA公司1930年的产品RCA 44BX,后来这公司也不知道倒闭了还是重组了,后来前几年好像出了个复古的R44C。目前市面上比较著名的几根铝带是COLES 4038,BEYERDYNAMIC的M160 M130,这几根价格从200到2000美元不等,但无一不是录音师在录音中或者现场扩音中的秘密武器。
3 X5 j8 O, ^/ m& c9 |0 x9 c3 H. j) C
铝带话筒的特点如下:
声音温暖结实无比,听过一次就终身难以忘记。
信号很小,对话放要求很严格。 ! m! i) X! H" }8 |1 r+ H& k( y- S
灵敏度不高,频响也不是很平直,但很有自己的风格。
特别容易损坏,而且要严格注意幻想供电开关。这和动圈话筒不同,动圈话筒开不开幻想供电问题不是很大,而铝带话筒则可以做到一开就烧。不但一开就烧,而且一摔就坏,喷上点口水更是完蛋,所以要保护的非常小心。 4 z/ a- c1 k2 {: s
今年的法兰克福琴展上无意在宁波某话筒厂的展位上淘到一根铝带话筒,是该厂按订单给国外公司OEM的。琴展上以半价买下,拿回来后在几次学校麦克风比较WORKSHOP上试验了一下(我们通常称这种为麦克风开会,一次用16根档次不一的麦克风排一块挨个比较),除了8字两面声音不一样(不知道是怎么装的),高频不够亮外,基本还算满意。只是拿去和我老师的M130放一块录就显的很操蛋,当然两者的价钱也相差好多倍。
2 B! p: k: }% O/ T# k5 t, \
其实铝带话筒作为家庭录音小作坊来讲是个很好的选择,因为铝带话筒录出的人声充满模拟录音那种温暖感,而且非常结实。同时灵敏度不象电容麦克那么高,对于没有条件把电脑和录音区隔开的朋友来讲也是个好事。而且和名牌电容麦比,价格也有优势。只要买个好点的单路话放就一切OK,而且还可以用与现场演出,我目前唯一放家里录着玩的话筒就这根宁波产的铝带,别的再好的电容在家里也没有办法录。 ; G& n+ f1 O5 r
- Z! l$ F% T. d+ _: n6 U
说了这么多,最后再强调一遍,用铝带话筒前千万要做的两个准备:
1,检查你的幻想供电是否关掉
2,防喷罩是否安装好 1 D3 S" \. Z+ p&&P) l
0 V; ^! y1 ?! `4 D% g- ~5 n
电容话筒:
电容话筒可能是这里大家最关心的部分了。飞乐话筒好不好?NT3好不好?驴的那个NB-1好不好?U87为什么卖的贵?专业棚里的电容话筒和自己家里的有什么区别?
我在一片闪光灯中清了清嗓子:这些问题,无可奉告!人群顿时散去一大半,剩下的同志将得到一份大礼,电容麦克风的构造以及使用。 3 v0 H1 i2 O9 `# Z, {; c7 n8 {( i
( X; ~( {% |5 \&&j
先丛电容麦克风的构造开始讲起,电容麦克风分为四个部分讲:音头,整合电路,平衡转换,供电。 ' _5 T7 [" P( v&&h
( d/ D5 J6 @0 P7 U5 Z: u. P: `- T
9 A0 O& u' A
音头: ( W: L3 R& K9 u# X. T" d3 ?8 F7 i
) M" {; p0 z0 M5 ~( k
电容麦克风的是音头是一个电容,电容的一极是震膜,另一极是背极板。当震膜随着声音震动时,改变了与背极板之间的距离,从而产生电压的变化。震膜一般是一层极薄的金属膜(大约5到10微米厚),也有用金属化的PVC材料代替的。最早的电容话筒的震膜,NEUMANN的M7系列音头就是采用的PVC材料,但PVC材料有个致命弱点,时间长了后会变脆变硬,所以现在的话筒中少有采用。
- T9 ]5 g+ I) h
根据震膜的大小将电容话筒分为大震膜和小震膜,一般来讲震膜大于一英寸的城为大震膜,当然0。9英寸的也可以勉强算在大震膜里。小震膜话筒的直径一般在10毫米以下,只有半英寸不到。大小震膜又分别有什么特性呢? * x&&i+ N& E, k4 o" {
& ]; ^9 |4 R/ y6 L% A7 L8 Y: V
一般来讲大震膜话筒灵敏度稍高,声音丰满。大多数大震膜话筒的指向性可通过话筒上的开关选择,具体原理见前面音头构造部分所讲的。少数型号的大震膜话筒只有心型指向,音头少了一半,电路少了一部分,成本自然就降低了。大震膜话筒通常用于人声语音或频率范围中低乐器的录制。 6 D' `" A7 D8 ]4 P/ h# C, j
0 z" g6 _6 i& n7 F9 U
小震膜话筒声音冷而亮,这和小震膜的尺寸有关系。大家设想一下,一个高频的声音到大震膜后会在震膜表面产生一系列的小形变。当这种几个小形变同时产生与震膜表面时,震膜会产生部分凹陷,部分突出的现象。这种现象我们称为干扰效应,这个干扰起始频率可以很简单的由震膜的大小计算出。比如一个震膜直径为5MM的小震膜话筒的起始频率为7KHZ左右,所有这个起始频率的整数倍的频率都会受干扰效应抵消。同样一个直径是25MM的大震膜话筒,它的其实频率从1。3KHZ就开始,也就是说所有1。3KHZ的整数倍频率都被抵消,其他高于1。3KHZ的频率也或多或少的受干扰效应的影响,所以大震膜话筒在高频的表现不如小震膜。也因此显的更温暖丰满。小震膜话筒对人声中的喷音以及吃音极度敏感,而且声音偏冷偏亮,所以通常不会用与人声的录制,无论是语音还是歌唱。但作为非电声乐器的录制,却是最常用的工具。如木吉他,小提琴,钢琴,鼓的OVERHEAD录制,通常小震膜话筒都是不二选择。 " [! f0 e" p* ]& q. g9 O1 b2 p# w
提到音头不得不提一下驻极体话筒。驻极体指的是电容中震膜和背板之间通过材料保持一定的偏压。这个内部偏压大约在100到200V之间。这么大的偏压产生的最显而易见的好处是降低了生产工艺的难度和成本,通常一个“真电容”麦克风电容音头两极的间距只有20到50微米,震膜是只有5到10微米的金属膜。而ぜ?宓缛莼巴部梢源蟠蠓趴砹郊??涞募渚啵?鹉ひ灿闷渌??院铣刹牧洗?妗K?酝ǔWぜ?逡?取罢娴缛荨北阋说亩啵?鏏KG的C,4000,铁三角的4033等。过去的驻极体有个毛病,就是时间长了后电容会自然放电,降低电容的偏压,而现在的新工艺则避免了这个缺点。但从技术参数上始终达不到“真电容”那么高的标准,同时声音也比不上好的“真电容”自然。其实驻极体技术本身并不比“真电容”差多少,只是由于生产工艺简单,各个小作坊都可以粗制滥造所以败坏了它的名声。
2 T! {# r: x: I5 j
整合电路: 4 F# s/ {9 h0 l# {
& O) B. H& @* J2 F
音头出来的信号需要经过一个整合电路转换为麦克风信号。这个整合电路主要分为两种,一种叫NF电路,也就是低频电路。这种电路普遍用于广大电容麦克风,麦克风信号进入一个前级放大器升压降阻,如果这个放大器采用的是真空管放大,这就是我们通常所说管子麦。
另外一种叫HF电路,也就是高频电路。只有少量的小震膜话筒采用这种整合电路,其特点是高频表现突出,代表产品是森海的MKH系列,Mkh是德文Mikrofon Kondensator Hochfrequenz的缩写,意思是高频电容麦克风。 ! Z1 V# }* s7 }4 h+ O0 D; Z% ~
2 G; e+ l8 w- r
麦克风信号需要在麦克风里经过一个平衡电路转换为平衡信号并降低阻抗输出,平衡和不平衡的知识稍候再开贴普及。总之平衡的方法有两种,就如同DI BOX有主动和被动一样。一种是电路平衡,一种是变压器平衡。最早的平衡方法一直是变压器平衡,大多数麦克风也都是采用的这种简单经典低成本的方法。到了70年代末,NEUMANN觉得得开发个新方法来卖他们的麦克(又是这群孙子第一个发明的),于是在1983年推出了他们的TLM系列。TLM:TRAFOLOSES MIKROFON ,无变压器麦克风。另外一个比较著名的例子是AKG的C414,大家都知道C414有金色和银色网罩两宽。金色那款叫414-TL的是非变压器平衡,银色那款是变压器平衡。至于两种平衡方法的好坏无从评价,但各自的优点倒可以一说。变压器平衡的优点是声音温暖,非变压器平衡的特点是灵敏度高,大家找两个414一比便知。
& A( i5 f6 t4 F! A9 S( b/ h% L
最后谈一下幻象供电,幻象供电分三种,48V加减4V的,24V加减4V的,12V加减4V的。后两种在日常生活中(昏)比较少见。但在不少电影或电视录音用的麦克风中会遇到,所以在拿到一个电容话筒的时候还是最好先看一下说明它的供电是多少的,话筒上通常会标住P48,P24,P12加以区分。最常见的48V供电很简单,XLR接口1接地,2和3都是正48V直流电。(不是正负!)
, |, P; D! {! ^&&W
另外我们常看到的领夹式话筒大部分也是电容话筒。当然,其中大部分都是驻极体的。所以这些领夹式MINI话筒也需要幻想供电,通常配套的无线发射器上会通过电池对他们供电。 ! [6 g4 U+ V4 Y7 `" q! L# v
总之,电容麦克风有着高灵敏度,频响宽且平直的特点而广泛的被应用在录音场合。但通常情况下它的最高声压值明显比动圈麦克风小20分贝左右,所以不适合用于录制产生很大声压的乐器和音箱。当然也有个别厂家通过特殊手段达到了这个目的,比如DPA的高压麦克风系列。
最后列举以下不得不知道的著名电容麦克风: " [/ w' A) [( }! L
NEUMANN U87,U89i,你不知道?你可以去继续看黄色网站了,这没你什么事了。M149和其他M管麦系列,TLM大震膜系列,以及KM小震膜系列,当然还有别的,NEUMANN所有的东西你都要看看。
森海 MKH系列,重点是MKH800,那根频响到50KHZ的香槟色麦克风,我昨天刚摔了它一次,好在摔在叠在一边的衣服上而且没人看见。此外要强调的是MKE系列MINI小话筒。当然,森海也同NEUMANN一样的待遇,全系列都要了解。 7 O" T&&R7 U( z
AKG,C414的两款,C12 VR 管子麦。个人不太喜欢C12,但名气大大家还是了解了解吧。另外AKG比较卖的多的是“蓝线”系列,AKG SE 300B,特点是可更换音头的小震膜话筒。
BEYERDYNAMIC,拔牙的电容麦常年处于半死不活状态,有小部分人喜欢,但不是特别出名。最出名的是是MC 833,一根被称为PARKUHR的立体声麦克。PARKUHR的意思是停车位旁边那种计时器,的确这麦克风长的挺象那样的。
SHURE的SM81也是很经典的一宽小震膜。坊间有那么种传说,用一对SM81做OVERHEAD录鼓,你拿一锣当CRASH也能录成那种经典的ROCK AND ROLL的鼓镲。
SCHOEPS 小震膜话筒极品中的极品,个人而言录音乐会上传统乐器的最爱。可惜就用过一次,以后我们老师就再也舍不得拿出来给我们糟蹋了。 : d1 R5 `- ^. x" o
BRAUNER 如果上天给我一个机会,免费送我一根麦克风的话,我肯定会选择:来根VMA。如果上天再给我一个机会的话:我会说:再来一根给我录STEREO。上天:你*就不能选点别的啊。
BLUE:和BRAUNER一样,BLUE的特长也是管子麦。著名的是那个大瓶子,第一次看见吓一跳,这么大个,里面起码可以灌个1。5升可乐。据说不错,可惜一直没有机会用过,欧洲人对澳洲人感冒,觉得那地方除了袋鼠最多造点牛奶。所以周围一直没有人买一根回来请我去糟蹋。 & T* v+ G+ |7 e5 t1 G' t
RODE:不用我多介绍了,国内卖的太火了。但似乎怎么也脱不了二流产品的帽子,谁用RODE就注定他收不出棚费。一个题外话,关于地球人都知道的NT2的鲜为人知的故事:大家都知道,NT2(不是797后来出的了,后来出的变味了)最早是仿造U87的。公元199X年,NEUMANN一纸诉状将RODE告上法庭。所以到现在德国都不允许销售NT2,德国所有的NT2(包括我们学校的两根)都是从别的国家搞来的。 ! C) o, F, S&&Z- S8 {
MICROTECH GEFALL:国内用的人似乎不多,但用过的都说好,其中M930大震膜做小震膜用,以及UM900管子麦都是行家的秘密武器。
铁三角:前几天论坛里有个卖得胜的到处推销得胜话筒,因为铁三角有部分便宜货是得胜待工的所以他又发贴讨论铁三角好不好。我的答案是铁三角是便宜货里比较中性的话筒,但音质始终上不到高档次上。其各档次大震膜和RODE各个产品大概同一水准,但因为是日货,大家千万别买。
其他好话筒:这就海了。很多牛的话筒都是手工小作坊出的,厂家规模不大,东西产量不高却非常有名而且狂贵。基本上一根麦克风可以够普通老百姓在北京生活个一两年,在偏僻山区可以过一辈子了。DPA,声乐士(注意不是台湾那个超乐士)等等,不一一列举。 7 Z3 Q. u6 ?; b6 B, Y
其他便宜话筒:包括各种中国货和前苏联货。其特点是:外形牛(我在琴展上看见和BLUE大瓶子一磨一样的俄罗斯话筒了),指标高超(光看技术指标,绝对比U87优秀,那频响平直的在上面开飞机)。拿到手后有人中奖,有人骂娘。原因,生产检测落后,质量差异巨大。写的我天昏地暗,歇几天先。 6 D2 L; W- q3 [4 C
在线时间36 小时最后登录威望0 金钱140 交易币0 金币热情-1 度注册时间阅读权限30帖子记录主题精华0积分60UID584294
一星会员, 积分 60, 距离下一级还需 140 积分
威望0 热情-1 度交易币0 金币注册时间积分60帖子主题记录
艾思特麦克风,路过。顶一下!罗德(RODE) RODE NT3 指向性小震膜电容人声录音话筒
手机扫码拿到手价
未安装一淘客户端请扫码下载
手机购买享更多优惠
价格¥1799
增值电信业务经营许可证:浙B2-
s003012.cm6&&&&0摩托迷 - 最大 最火爆的摩托车论坛最近被加入的企业
名片夹还没有企业信息,赶紧查看企业联系方式加入吧!
『泉州震海液压气动设备有限公司』的联系方式为,400-0555485,联系人:梁吉辉
输出功率:1kw输入功率:1kw容积效率:1%额定转速:1r/min重量:1kg总效率:1%吸入压力:1Pa出口直径:1mm外形尺寸:1mm噪声:1dB(A)吸入口直径:1mm品牌:其他是否变量:其他工作原理:其他加工定制:是叶轮数目:其他额定压力:1Mpa公称排量:1mL/h材质:1公称直径:1mm型号:齐全
PV2R3-116R
PV2R3-125R
PV2R3-136R
PV2R3-153R
PV2R1-8L1、叶片式液压马达
由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳定。因此叶片式液压马达一般用于转速高、转矩小和动作要求灵敏的场合。
2、径向柱塞式液压马达
径向柱塞式液压马达工作原理,当压力油经固定的配油轴4的窗口进入缸体内柱塞的底部时,柱塞向外伸出,紧紧顶住定子的内壁,由于定子与缸体存在一偏心距。在柱塞与定子接触处,定子对柱塞的反作用力为。力可分解为 和 两个分力。当作用在柱塞底部的油液压力为p,柱塞直径为d,力和之间的夹角为 X时,力对缸体产生一转矩,使缸体旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。
以上分析的一个柱塞产生转矩的情况,由于在压油区作用有好几个柱塞,在这些柱塞上所产生的转矩都使缸体旋转,并输出转矩。径向柱塞液压马达多用于低速大转矩的情况下。
3、轴向柱塞马达
轴向柱塞泵除阀式配流外,其它形式原则上都可以作为液压马达用,即轴向柱塞泵和轴向柱塞马达是可逆的。轴向柱塞马达的工作原理为,配油盘和斜盘固定不动,马达轴与缸体相连接一起旋转。当压力油经配油盘的窗口进入缸体的柱塞孔时,柱塞在压力油作用下外伸,紧贴斜盘斜盘对柱塞产生一个法向反力p,此力可分解为轴向分力及和垂直分力Q。Q与柱塞上液压力相平衡,而Q则使柱塞对缸体中心产生一个转矩,带动马达轴逆时针方向旋转。轴向柱塞马达产生的瞬时总转矩是脉动的。若改变马达压力油输入方向,则马达轴按顺时针方向旋转。斜盘倾角a的改变、即排量的变化,不仅影响马达的转矩,而且影响它的转速和转向。斜盘倾角越大,产生转矩越大,转速越低。
4、齿轮液压马达
齿轮马达在结构上为了适应正反转要求,进出油口相等、具有对称性、有单独外泄油口将轴承部分的泄漏油引出壳体外;为了减少启动摩擦力矩,采用滚动轴承;为了减少转矩脉动齿轮液压马达的齿数比泵的齿数要多。
齿轮液压马达由干密封性差,容租效率较低,输入油压力不能过高,不能产生较大转矩。并且瞬间转速和转矩随着啮合点的位置变化而变化,因此齿轮液压马达仅适合于高速小转矩的场合。一般用于工程机械、农业机械以及对转矩均匀性要求不高的机械设备上。
PV2R3-76L工作压力:输入马达油液的实际压力,其大小决定于马达的负载。
马达进口压力与出口压力的差值称为马达的压差。
额定压力:按试验标准规定,使马达连续正常工作的最高压力。
排量:VM (m/rad)
不计泄漏时的流量称理论流量qMt,考虑泄漏流量为实际流量qM。
容积效率ηMv:理论输入流量与实际输入流量的比值,
在不计马达的损失情况下,其输出功率等于输入功率.
实际转矩T:由于马达实际存在机械损失而产生损失扭矩ΔT,使得比理论扭矩Tt小,即马达的机械效率ηMm:等于马达的实际输出扭矩与理论输出扭矩的比.
马达实际输入功率为pqM,实际输出功率为Tω.
马达总效率 ηM:实际输出功率与实际输入功率的比值.
PV2R3-116L
PV2R3-125L
PV2R3-136L
PV2R3-153L
PV2R2-53NT3-C63F.
PV2R1-06-F-R
PV2R1-08-F-R压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等
PV2R1-10-F-R
PV2R1-12-F-R
PV2R1-14-F-R
PV2R1-17-F-R
PV2R1-19-F-R
PV2R1-23-F-R
PV2R1-25-F-R
PV2R1-31-F-R
PV2R1-06-F-L
PV2R1-08-F-L
PV2R1-10-F-L
PV2R1-12-F-L
PV2R1-14-F-L
PV2R1-17-F-L
PV2R1-19-F-L
PV2R1-23-F-L
PV2R1-25-F-L
PV2R1-31-F-L
PV2R1-06-L-R
PV2R1-08-L-R
PV2R1-10-L-R
PV2R1-12-L-R
PV2R1-14-L-R
PV2R1-17-L-RNT3-C63F.
PV2R1-19-L-R
PV2R1-23-L-R
PV2R1-25-L-R
PV2R1-31-L-R
PV2R1-06-L-L
PV2R1-08-L-L
PV2R1-10-L-L
PV2R1-12-L-L
PV2R1-14-L-L
PV2R1-17-L-L
PV2R1-19-L-L
PV2R1-23-L-L
PV2R1-25-L-L
PV2R1-31-L-L
PV2R2-26-F-R
PV2R2-33-F-R
PV2R2-41-F-R
PV2R2-47-F-R
PV2R2-53-F-R另:对于液压系统这三大顽疾,有人进行了总结:“发烧、拉稀带得瑟”(这位总结者是东北人)
PV2R2-59-F-R
PV2R2-65-F-R
PV2R2-26-F-L
PV2R2-33-F-L
PV2R2-41-F-L
PV2R2-47-F-L
PV2R2-53-F-L
PV2R2-59-F-L
PV2R2-65-F-L
PV2R2-26-L-R
PV2R2-33-L-R
PV2R2-41-L-R
PV2R2-47-L-R
PV2R2-53-L-R
PV2R2-59-L-R
PV2R2-65-L-R
PV2R2-26-L-L
PV2R2-33-L-L
PV2R2-41-L-L
PV2R2-47-L-LNT3-C63F.
PV2R2-53-L-L
PV2R2-59-L-L
PV2R2-65-L-L
PV2R12-26/31
PV2R12-33/10
PV2R12-41/23
PV2R12-59/31
PV2R12-53/17
PV2R12-41/23
PV2R12-47/23
PV2R12-33/19
PV2R12-59/31
PV2R12-59/12
PV2R12-65/28
PV2R12-59/23
PV2R12-33/33
PV2R12-31/26
PV2R12-53/28
PV2R12-65/28
PV2R13-52/31
PV2R13-60/28
PV2R13-66/25
PV2R13-76/23
PV2R13-94/19
PV2R13-116/31
PV2R13-8/52油缸是工程机械最主要部件,传统的加工方法是:拉削缸体——精镗缸体——磨削缸体。采用滚压方法 是:拉削缸体——精镗缸体——滚压缸体,更多技术可咨询:宁波高新区镜博士科技有限公司 周刚
工序是3部分,但时间上对比:磨削缸体1米大概在1-2天的时间,滚压缸体1米大概在10-30分钟的时间。投入对比:磨床或绗磨机(几万——几百万),滚压刀(1仟——几万)。液压设备的方式
滚压后,孔表面粗糙度由幢滚前Ra3.2~6.3um减小为Ra0.4~0.8um,孔的表面硬度提高约30%,缸筒内表面疲劳强度提高25%。油缸使用寿命若只考虑缸筒影响,提高2~3倍,镗削滚压工艺较磨削工艺效率提高3倍左右。以上数据说明,滚压工艺是高效的,能大大提高缸筒的表面质量。
油缸经过滚压后,表面没有锋利的微小刃口,长时间的运动摩擦也不会损伤密封圈或密封件,这点在液压行业特别重要。
PV2R13-66/14
PV2R13-23/116
PV2R13-94/23
PV2R13-116/28
PV2R13-94/25
PV2R13-94/28
PV2R13-116/23
PV2R13-28/94
PV2R13-116/66
PV2R23-52/116
PV2R23-60/33
PV2R23-66/41
PV2R23-53/66
PV2R23-65/116
PV2R23-53/94
PV2R23-116/63
PV2R23-66/53
PV2R3-76-F-RNT3-C63F.
PV2R3-94-F-R
PV2R3-116-F-R
PV2R3-76-L-R
PV2R3-94-L-R
PV2R3-116-L-R
PV2R3-76-F-L
PV2R3-94-F-L
PV2R3-116-F-L
PV2R3-76-L-L
PV2R3-94-L-L
PV2R3-116-L-L
VFA1-12F-*-
VFA1-15F-*-
VFB1-20F-*-
VFD1-25F-*-
VFD1-30F-*-
VFE1-40F-*-
VFA1-12F-A1
VFA1-12F-A2
VFA1-12F-A3
VFA1-12F-A33、柱塞油泵,又分为轴向柱塞油泵和径向柱塞油泵,轴向柱塞泵有定量泵、变量泵、(变量泵又分为手动变量与压力补偿变量、伺服变量等多种)从结构上又分为端面配油和阀式配油两种配油方式,而径向柱塞泵的配油型式,基本上为阀式配油
VFA1-12F-A4
VFA1-15F-A1
VFA1-15F-A2
VFA1-15F-A3
VFA1-15F-A3
VFA1-15F-A4
VFB1-20F-A1
VFB1-20F-A2
VFB1-20F-A3
VFB1-20F-A4
VFD1-25F-A1
VFD1-25F-A2
VFD1-25F-A3
VFD1-25F-A4
VFD1-30F-A1
VFD1-30F-A2
VFD1-30F-A3
VFD1-30F-A4
VFE1-40F-A1
VFE1-40F-A2NT3-C63F.
VFE1-40F-A3
VFE1-40F-A4
VA1-08F-A1
VA1-08F-A2
VA1-08F-A3
VA1-12F-A1
VA1-12F-A2
VA1-12F-A3
VA1-15F-A1
VA1-15F-A2
VA1-15F-A3
VB1-20F-A1
VB1-20F-A2
VB1-20F-A3液压元件可分为动力元件和控制元件以及执行元件三大类
VB1-24F-A1
VB1-24F-A2
VB1-24F-A3
VC1-26F-A1
VC1-26F-A2
VC1-26F-A3
VD1-25F-A1
VD1-25F-A2
VD1-25F-A3
VD1-30F-A1
VD1-30F-A2
VD1-30F-A3
VE1-35F-A1
VE1-35F-A2
VE1-35F-A3
VE1-40F-A1
VE1-40F-A2
VE1-40F-A3
VE1-45F-A1
VE1-45F-A2
VE1-45F-A3
VA1A1-0808F-A1
VA1A1-0808F-A2
VA1A1-0808F-A3外泄漏是指发生在系统和外部环境之间的泄漏
VA1A1-1212F-A1
VA1A1-1212F-A2
VA1A1-1212F-A3
VA1A1-1515F-A1
VA1A1-1515F-A2
VA1A1-1515F-A3
VB1B1-2020F-A1
VB1B1-2020F-A2
VB1B1-2020F-A3
VB1B1-2424F-A1
VB1B1-2424F-A2
VB1B1-2424F-A3
VD1D1-2525F-A1
VD1D1-2525F-A2
VD1D1-2525F-A3
VD1D1-3030F-A1
VD1D1-3030F-A2
VD1D1-3030F-A3
VE1E1-4040F-A1
VE1E1-4040F-A2
VE1E1-4040F-A3
VE1E1-4545F-A1
VE1E1-4545F-A2
VE1E1-4545F-A3
VD2-20F-A*
VD2-20F-A2
VD2-20F-A3使用质量好的液压油、液压管路的布置中应尽量避免弯头的出现、使用高质量的管路以及管接头、液压阀等
VD2-20F-A4
VD2-25F-A*
VD2-25F-A2
VD2-25F-A3
VD2-25F-A4
VD2-30F-A*
VD2-30F-A2
VD2-30F-A3
VD2-30F-A4
VE2-40F-A*
VE2-40F-A2
VE2-40F-A3
VE2-40F-A4
VF2-54F-A*
VF2-54F-A2
VF2-54F-A3
VF2-54F-A4
VK2-70F-A*
VK2-70F-A2
VK2-70F-A3
VK2-70F-A4
VK2-86F-A*
VK2-86F-A2
VK2-86F-A3
VK2-86F-A4.
VD2D2-2020另:对于液压系统这三大顽疾,有人进行了总结:“发烧、拉稀带得瑟”(这位总结者是东北人)
VD2D2-2525
VD2D2-3030
VE2E2-4040
VF2F2-5454
VK2K2-7070
VD3-20F-A1
VD3-25F-A1
VD3-30F-A1
VE3-40F-A1
VF3-54F-A1
VK3-70F-A1
VK3-86F-A1
VD3-20F-A2
VD3-25F-A2
VD3-30F-A2
VE3-40F-A2
VF3-54F-A2
VK3-70F-A2
VK3-86F-A2在液压系统中,由于某种原因引起液体压力在某一瞬间突然急剧上升,而形成很高的压力峰值,这种现象称为液压冲击。
1、产生液压冲击的原因(1)阀门突然关闭引起液压冲击
如图2-20所示有一较大容腔(如液压缸、蓄能器等)和在另一端装有阀门K的管道相通。阀门开启时,
阀门突然关闭而产生液压冲击
阀门突然关闭而产生液压冲击
管内液体流动。当阀门突然关闭时,从阀门处开始迅速将液体动能逐层转化为压力能,相应产生一从阀门向容腔推进的高压冲击波;此后又从容腔开始将液体压力能逐层转化为动能,液体反向流动;然后,再次将液体动能转化为压力能而形成一高压冲击波,如此反复地进行能量转化,在管道内形成压力震荡。由于液体内摩擦力和管道弹性变形等的影响,振荡过程会逐渐衰渐而趋于稳定。
2)运动部件突然制动或换向时引起液压冲击
换向阀突然关闭液压缸的回油通道而使运动部件制动时,这一瞬间运动部件的动能会转化为封闭油液的压力能,压力急剧上升,出现液压冲击。
(3)某些液压元件动作失灵或不灵敏产生的液压冲击
当溢流阀在系统中做安全阀使用时,如果系统过载安全阀不能及时打开或根本打不开,也会导致系统管道压力急剧升高,产生液压冲击。
2、液压冲击的危害
(1)巨大的瞬时压力峰值使液压元件,尤其是液压密封件遭受破坏。
(2)系统产生强烈震动及噪声,并使油温升高。
(3)使压力控制元件(如压力继电器、顺序阀等)产生误动作,造成设备故障及事故。
3、减小液压冲击的措施
(1)延长阀门关闭和运动部件换向制动时间
当阀门关闭和运动部件换向制动时间大于0.3s时,液压冲击就大大减小。为控制液压冲击可采用换向时间可调的换向阀。如采用带阻尼的电液换向阀可通过调节阻尼以及控制通过先导阀的压力和流量来减缓主换向阀阀芯的换向(关闭)速度,液动换向阀也与此类似。
(2)限制管道内液体的流速和运动部件速度
机床液压系统,常常将管道内液体的流速限制在5.0m/s以下,运动部件速度一般小于10m/min等。
(3)适当加大管道内径或采用橡胶软管
可减小压力冲击波在管道中的传播速度,同时加大管道内径也可降低液体的流速,相应瞬时压力峰值也会减小。
(4)在液压冲击源附近设置蓄能器
使压力冲击波往复一次的时间短于阀门关闭时间,而减小液压冲击
10空穴现象
VD3-20F-A3
VD3-25F-A3
VD3-30F-A3
VE3-40F-A3
VF3-54F-A3
VK3-70F-A3
VK3-86F-A3
VD3-20F-A4
VD3-25F-A4
VD3-30F-A4
VE3-40F-A4
VF3-54F-A4
VK3-70F-A4
VK3-86F-A4
VFA1-12F-*-
VFA1-15F-*-
VFB1-20F-*-
VFD1-25F-*-
VFD1-30F-*-
VFE1-40F-*-
VFA1-12F-A1
VFA1-15F-A1
VFB1-20F-A1
VFD1-25F-A1
VFD1-30F-A1
VFE1-40F-A1
VFA1-12F-A2
VFA1-15F-A2
VFB1-20F-A2
VFD1-25F-A2
VFD1-30F-A2在液压系统及其系统中,密封装置用来防止工作介质的泄漏及外界灰尘和异物的侵入。其中起密封作用的元件,即密封件。外漏会造成工作介质的浪费,污染机器和环境,甚至引起机械操作失灵及设备人身事故。内漏会引起液压系统容积效率急剧下降,达不到所需要的工作压力,甚至不能进行工作。侵入系统中的微小灰尘颗粒,会引起或加剧液压元件摩擦副的磨损,进一步导致泄漏。
因此,密封件和密封装置是液压设备的一个重要组成部分。它的工作的可靠性和使用寿命,是衡量液压系统好坏的一个重要指标。除间隙密封外,都是利用密封件,使相邻两个偶合表面间的间隙控制在需要密封的液体能通过的最小间隙以下。在接触式密封中,分为自封式压紧型密封和自封式自紧型密封(即唇形密封)两种。
VFE1-40F-A2
VFA1-12F-A3
VFA1-15F-A3
VFB1-20F-A3
VFD1-25F-A3
VFD1-30F-A3
VFE1-40F-A3
VFA1-12F-A4
VFA1-15F-A4
VFB1-20F-A4
VFD1-25F-A4
VFD1-30F-A4
VFE1-40F-A4
VHID:VHID-3030
VHID-4040为减少噪声,必须对噪声源进行实际调查,测量分析液压系统的声压级,进行频率分析,从而掌握噪声源的大小及频率特性,采取相应办法,具体列举如下:
① 使用低噪声电机;并使用弹性联轴器,以减少该环节引起的振动和噪声;
② 在电动机,液压泵和液压阀的安装面上应设置防振胶垫;
③ 尽量用液压集成块代替管道,以减少振动;
④ 用蓄能器和橡胶软管减少由压力脉动引起的振动,
蓄能器能吸收10 Hz以下的噪声,而高频噪声,用液压软管则十分有效;⑤ 用带有吸声材料的隔声罩,将液压泵罩上也能有效地降低噪声;
⑥ 系统中应设置放气装置。液压件的表面要求及加工
缸筒作为油缸、矿用单体支柱、液压支架、炮管等产品的主要部件,其加工质量的好坏直接影响整个产品的寿命和可靠性。缸筒加工要求高,其内表面粗糙度要求为Ra0.4~0.8um,对同轴度、耐磨性要求严格。缸筒的基本特征是深孔加工,其加工一直困扰加工人员。
采用滚压加工,由于表面层留有表面残余压应力,有助于表面微小裂纹的封闭,阻碍侵蚀作用的扩展。从而提高表面抗腐蚀能力,并能延缓疲劳裂纹的产生或扩大,因而提高缸筒疲劳强度。通过滚压成型,滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了缸筒内壁的耐磨性,同时避免了因磨削引起的烧伤。滚压后,表面粗糙度值的减小,可提高配合性质。
液压阀作为液压系统的控制枢纽,运动频繁,对各组成部分器件的精度要求、密封性、可靠性都要求非常高,国外大部分企业都采用滚压来提高精度配合,如:日本的小松机械、日立机械等,在一些重要部件图纸中都明确要求滚压加工。
滚压及加工
VHID-3030-A1
VHID-4040-A1
VHID-3030-A2
VHID-4040-A2
VHOD:VH0D-1515
VH0D-2020.VH0D-1515-A1
VH0D-2020-A1
VH0D-1515-A2
VH0D-2020-A2
VHPD-3030机械噪声是由于零件之间发生接触、撞击和振动而引起的。
① 回转体的不平衡
在液压系统中,电动机、液压泵和液压马达都以高速回转,如果它们的转动部件不平衡,就会产生周期性的不平衡力,引起转轴的弯曲振动,因而产生噪声,这种振动传到油箱和管路时,发出很大的声响,为了控制这种噪声,应对转子进行精密的动平衡实验,并注意尽量避开共振区。
② 电动机噪声
电动机噪声主要是指机械噪声、通风噪声和电磁噪声。机械噪声包括转子不平衡引起的低频噪声,轴承有缺陷和安装不合适而引起的高频噪声以及电动机支架与电动机之间共振所引起的噪声。控制的方法是,轴承与电动机壳体和电动机轴配合要适当,过盈量不可过大或过小,电动机两端盖上的孔应同轴;轴承润滑要良好。
③联轴器引起噪声
联轴器是液压泵与电动机之间的连接机构,如果电动机和液压泵不同轴以致联轴器偏斜,则将产生振动与噪声。因此在安装时,两者应保持在最小范围内。
常见问题分析
VHPD-3030-A1
VHPD-4040-A1
VHPD-3030-A2
VHPD-4040-A2
50T:50T-07
50T-36在液压传动系统中,各元件或部件产生噪声和传递噪声程度不同,表1列出了液压元件或部件产生和传递噪声的名次。表1 液压元(部)件产生和传递噪声名次表元件与部件 名称液压泵溢流阀压力阀@节流阀方向阀液压缸油箱管路产生噪声的 名次传递噪声的 名次 注:表中@指的是溢流阀之外的压力控制阀 由于液压系统的噪声不只一种,因此最终表现出来的是其合成值,一般来讲,液压系统的噪声不外乎机械噪声和流体噪声两种,下面予以分析说明。
常见问题分析
50T-07-F-R
50T-12-F-R
50T-14-F-R
50T-17-F-R
50T-20-F-R
50T-23-F-R
50T-26-F-R
50T-30-F-R
50T-36-F-R
50T-39-F-R
50T-07-L-R
50T-12-L-R
50T-14-L-R
50T-17-L-R
50T-20-L-R
50T-23-L-R
50T-26-L-R
50T-30-L-R
50T-36-L-R
50T-39-L-R.
50T-07-F-L
50T-12-F-L
50T-14-F-L
50T-17-F-L在液压系统中,流体噪声占相当大的比例。这种噪声是由于油液的流速、压力的突然变化以及气穴等原因引起的。
① 液压泵的流体噪声
液压泵的流体噪声主要是由泵的压力、流量的周期性变化以及气穴现象引起的。在液压泵的吸油和压油循环中,产生周期性的压力和流量变化,形成压力脉动,从而引起液压振动,并经出口向整个系统传播。同时液压回路的管道和阀类将液压泵的压力反射,在回路中产生波动,使泵产生共振,发出噪声;另一方面,液压系统中(指开式回路)溶解了大约5%的空气。当系统中的压力因某种原因而低于空气分离压时,其中溶解于油中的气体就迅速地大量分离出来,形成气泡,这些气泡遇到高压便被压破,产生较强的液压冲击。对于前者的控制办法,设计时齿轮模数尽量取小,齿数尽量取多,缺载槽的形状和尺寸要合理,柱塞泵的柱塞个数应为奇数,最好为7~9个,并在进、排油配流盘上对称开上三角槽,以防柱塞泵的困油。为防止空气混入,
50T-20-F-L
50T-23-F-L
50T-26-F-L
50T-30-F-L
50T-36-F-L
50T-39-F-L
50T-07-L-L
50T-12-L-L
50T-14-L-L
50T-17-L-L
50T-20-L-L
50T-23-L-L
50T-26-L-L
50T-30-L-L
50T-36-L-L
50T-39-L-L
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫o布拉曼(Joseph Braman,),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战()后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁o尼斯克(GoConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战()期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
与机械传动、电气传动相比,液压传动具有以下优点:
1、液压传动的各种元件,可以根据需要方便、灵活地来布置。
2、重量轻、体积小、运动惯性小、反应速度快。
3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。
4、可自动实现过载保护。
5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。
6、很容易实现直线运动。
7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。
液压元件逐步实现了标准化、系列化,其规格、品种、质量、性能都有了很大提高,尤其是采用电子技术、伺服技术等新技术新工艺后,液压系统的质量得到了显著的提高,其在国民经济及军事工业中发挥了重大作用。从不同的角度出发,可以把液压系统分成不同的形式。[1]
(1)按油液的循环方式,液压系统可分为开式系统和闭式系统。开式系统是指液压泵从油箱吸油,油经各种控制阀后,驱动液压执行元件,回油再经过换向阀回油箱。这种系统结构较为简单,可以发挥油箱的散热、沉淀杂质作用,但因油液常与空气接触,使空气易于渗入系统,导致机构运动不平稳等后果。开式系统油箱大,油泵自吸性能好。闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。其结构紧凑,与空气接触机会少,空气不易渗入系统,故传动较平稳。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,因无油箱,油液的散热和过滤条件较差。为补偿系统中的泄漏,通常需要一个小流量的补油泵和油箱。由于单杆双作用油缸大小腔流量不等,在工作过程中会使功率利用下降,所以闭式系统中的执行元件一般为液压马达。
(2)按系统中液压泵的数目,可分为单泵系统,双泵系统和多泵系统。
(3)按所用液压泵形式的不同,可分为定量泵系统和变量泵系统。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,但其结构和制造工艺复杂,成本高,可分为手动变量、尽可能控变量、伺服变量、压力补偿变量、恒压变量、液压变量等多种方式。
(4)按向执行元件供油方式的不同,可分为串联系统和并联系统。串联系统中,上一个执行元件的回油即为下一个执行元件的进油,每通过一个执行元件压力就要降低一次。在串联系统中,当主泵向多路阀控制的各执行元件供油时,只要液压泵的出口压力足够,便可以实现各执行元件的运动的复合。但由于执行元件的压力是叠加的,所以克服外载能力将随执行元件数量的增加而降低。并联系统中,当一台液压泵向一组执行元件供油时,进入各执行元件的流量只是液压泵输出流量的一部分。流量的分配随各件上外载荷的不同而变化,首先进入外载荷较小的执行元件,只有当各执行元件上外载荷相等时,才能实现同时动作。全液压传动机械性能的优劣,主要取决于液压系统性能的好坏,包括所用元件质量优劣,基本回路是否恰当等。系统性能的好坏,除满足使用功能要求外,应从液压系统的效率、功率利用、调速范围和微调特性、振动和噪声以及系统的安装和调试是否方便可靠等方面进行。现代工程机械几乎都采用了液压系统,并且与电子系统、计算机控制技术结合,成为现代工程机械的重要组成部分。
它是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫“水压机”;充油的称“油压机”。两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压力传递给大活塞,将大活塞顶上去。设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。于是,小活塞对液体的压强为P=F1/SI,能够大小不变地被液体向各个方向传递”。大活塞所受到的压强必然也等于P。若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力F2=PxS2,截面积是小活塞横截面积的倍数。从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。
对于小型润滑系统,可利用和设备规定的液压油相同的油品进行清洗工作。清洗过后的油不再符合润滑的要求,而且包含杂质太多,清洗完毕后必须彻底排除。经清洗后的润滑系统再加入规定的液压油。
有些液压设备维修后,用金属清洗剂或肥皂水清洗系统,再加液压油进行试机,发现泡沫大,油压不稳,认为该品牌的液压油质量差,把油排净后换另一品牌的油工作正常,就断定前一油差后一油好,其实这是冤案,前油替后油“受了过”,由于系统中残存的金属清洗剂中的表面活性剂组分污染了前油而使其抗泡性变差,使设备工作异常,前油排净时也同时把系统冲刷干净,后油也就正常了,类似情况经常发生。滤油就用油性滤纸,几块钱一张,将近半平方米。省事点就用汽车机油滤清器改装。做或买一个够大的油箱,侧面下部装滤纸或滤清器,箱上部装个气嘴接头,接上气泵加压,就能滤了。其他部分可以自己想了。
一、根据液压系统图查找液压故障
在液压系统图分析排除故障时,主要方法是“抓两头”——即抓动力源(液压泵)和执行元件(液压油缸、液压马达),然后是“连中间”,即从动力源到执行元件之间经过的管路和控制元件。“抓两头”时,要分析故障是否就出在液压泵、液压油缸和液压马达本身。“连中间”时除了要注意分析故障是否出在所连线路上液压元件外,还要特别注意弄清楚系统从一个工作状态转移到另一个工作状态时是采用哪种控制方式,控制信号是否有误,要针对实物,逐一检查,要注意各个主油路之间及主油路与控制油路之间有无接错而产生相互干涉现象,如有相互干涉现象,要分析是何等使用调节错误等。
二、利用因果图查找液压故障
利用因果图(又称鱼刺图)分析方法,对液压设备出现的故障进行分析,既能较快地找出故障主次原因,又能积累排除故障的经验。
因果图分析法,可以用将维护管理与查找故障密切结合起来,因而被广泛采用。
三、应用铁谱技术对液压系统的故障进行诊断和状态监控
铁谱技术是以机械摩擦副的磨损为基本出发点,借助于铁谱仪把液压油中的磨损颗粒和其他污染颗粒分离出来,并制成铁谱片,然后置于铁谱显微镜或扫描电子显微镜下进行观察,或按尺寸大小依次沉积在玻璃管内,应用光学方法进行定量检测。通过以上分析,可以准确地获得系统内有关磨损方面的重要信息。据此进一步研究磨损现象,监测磨损状态,诊断故障前兆,最后作出系统失效预报。
铁谱技术能有效地应用于工程机械液压系统油液污染程度的检测,监控,磨损过程的分析和故障诊断,并且具有直观、准确、信息多等优点。因此,他已成为对机械工程液压系统故障进行诊断分析的有力工具。
四、利用故障现象与故障原因相关分析表查找液压故障
根据工作实践,总结出故障现象与故障原因相关关系表(或由厂家提供),可以用于一般液压故障的查找和处理。
五、利用设备的自诊断功能查找液压故障
随着电子技术的不断发展,2012年,许多大中型工程机械,采用了电子计算机控制、通过接口电路及传感技术,对其液压系统进行自诊断,并显示在荧光屏上,使用、维修者可根据显示故障的内容进行故障排除。
六、液压机的维护保养正确使用机器设备,认真进行维护保养和严格执行安全操作规程,是延长设备使用寿命,保证安全生产的必要条件,因此,操作者除应熟悉机器结构性能外,还应注意以下各点。1、液压站的调试及维修需要专业人员,液压组件拆卸时,应将零件放在干净的地方。各个有密封的表面不能有划伤现象。2、液压油是液压站工作时的能量传递介质,液压油的质量、清洁度、粘度对液压泵、液压阀及液压缸的寿命起到了主导地位,故在使用液压站时应高度重视液压油的质量和保持液压油的清洁。液压系统用油,必须经过严格的过滤,在液压系统中应配置滤油器。3、在保证系统正常工作的条件下,液压泵的压力应尽量调得低些,背压阀的压力也尽可能调得低些,以减少能量损耗,减少发热。4、为了防止灰尘和水等落入油液,油箱周围应保持清洁,应定期进行维护保养。5、油箱的液面要经常保持足够的高度,使系统中的油液有足够的循环冷却条件,并注意保持油箱、油管等设备的清洁,以有利于散热。一般油温在30℃-55℃为安全温度是最适当的使用温度,性能最高,寿命最长。油温逾60℃,每上升8℃,其使用寿命将次第减半。6、应尽量防止系统中各处的压力低于大气压力,同时应使用良好的密封装置,密封失效时应及时更换,所有受力螺钉如:缸口导套螺钉、活塞杆法兰螺钉等,要定期紧固以防松动。防止空气进入液压系统、漏油。7、有水冷却器的系统,应保持冷却水量充足,管路畅通。有风冷却器的系统,应保持通风顺畅。防止油温过高。8、有过滤器的系统,应定期清理或更换滤芯(约一个月),防止堵塞,油温上升过快,严重时会造成液压组件或油泵破裂。9、系统工作压力是通过调压阀来调定液压泵的输出压力。一般情况,调定的压力不能超过其原来设计的额定压力,否则有可能造成液压泵损坏、液压阀卡死或电机烧坏等等现象。10、液压阀及集成块的字母代号说明P为压力油口,T为回油口。A、B为接执行组件(液压缸)的工作油口。X或K为液压组件外控油口,Y或R为液压组件外泄油口。11、为保证压机可靠运行,压机某些元件在达到使用寿命周期后,建议用户必须予以更换。12、将保养中已解决与未解决的主要问题记录入档,作为下次保养或安排检修计划的资料依据。
150T-48-F-R
150T-61-F-R
150T-75-F-R
150T-94-F-R
150T-116-F-R
150T-48-L-R
150T-61-L-R
150T-75-L-R
150T-94-L-R
150T-116-L-R
150T-48-F-L
150T-61-F-L
150T-75-F-L
150T-94-F-L
150T-116-F-L
150T-48-L-L
150T-61-L-L
150T-75-L-L
150T-94-L-L
150T-116-L-L
150T-48 SL
150T-61 SL
150T-75 SL
150T-94 SL
150T-116 SL
VP-45F-A1简介
VP-45F-A3NT3-C63F.
VP-30L-A3从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式 和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
VP-08-08F-A1
VP-12-12F-A1
VP-15-15F-A1
VP-20-20F-A11开箱:油缸内封有气化性防锈剂,所以,在装配前不得拆下入口的塞子。如果拆下塞子,必须立即安装在机体上,而且在油缸内放满油
2防锈:油缸安装在机体上以后,如果活塞在伸出的情况下放置时,必须在活塞杆的露出部分涂敷油脂。
3速度:一般规格的油缸,当动作速度超过2m/s时,其使用寿命将会受到影响。以0.3m/s作为冲程末端的场合,为了保护机构和安全起见,建议内部安装缓冲机构。另外,使油缸停止时,为了保护油缸机构和安全起见,线路上也必须考虑,以防止发生很大的冲击。为了增加油缸的回油量,线路设计时应该特别注意。在0.5m/min以下低速运转时,将会影响到动作性(特别是振动),所以,低速运转时,应该进行洽谈。
4运转:运转初期,必须完全排清油缸内的空气。残留空气的场合,采取低速充分运转,排除空气。如果油缸内残留空气受急剧夹压时,那么,由于液压油的作用,有可能使密封圈烧损。另外,动作中如果油缸内部产生负压,那么,将有可能由于气蚀作用而发生异常。
特点及分类
VP-24-24F-A1
VP-26-26F-A1
VP-25-25F-A1
VP-30-30F-A1
VP-40-40F-A1
VP-45-45F-A1
VP-08-08F-A2
VP-12-12F-A2
VP-15-15F-A2
VP-20-20F-A2
VP-24-24F-A2
VP-26-26F-A2
VP-25-25F-A2
VP-30-30F-A2
VP-40-40F-A2
VP-45-45F-A2
VP-08-08F-A3
VP-12-12F-A3
VP-15-15F-A3
VP-20-20F-A3
VP-24-24F-A3
VP-26-26F-A3
VP-25-25F-A3
VP-30-30F-A3
VP-40-40F-A3
VP-45-45F-A3根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀
VP-08-08L-A1
VP-12-12L-A1
VP-15-15L-A1
VP-20-20L-A1
VP-24-24L-A1
VP-26-26L-A1
VP-25-25L-A1
VP-30-30F-A1
VP-40-40L-A1
VP-45-45L-A1
VP-08-08L-A2
VP-12-12L-A2
VP-15-15L-A2
VP-20-20L-A2
VP-24-24L-A2
VP-26-26L-A2
VP-25-25L-A2
VP-30-30L-A2
VP-40-40L-A2
VP-45-45L-A2
VP-08-08L-A3
VP-12-12L-A3
VP-15-15L-A3
VP-20-20L-A3NT3-C63F.
VP-24-24L-A3
VP-26-26L-A3
VP-25-25L-A3
VP-30-30L-A3
VP-40-40L-A3
VP-45-45L-A3
HVP-FAI-L5R
HVP-FAI-L8R
HVP-FAI-L11R
HVP-FAI-L13R
HVP-30-FA2
HVP-30-FA3
HVP-40-FA2
HVP-40-FA3
HVP-30-F-A2/3-02
HVP-40-F-A2/3
VPVC-F20-A4-02在液压系统中,如果某处压力低于油液工作温度下的空气分离压时,油液中的空气就会分离出来而形成大量气泡;当压力进一步降低到油液工作温度下的饱和蒸汽压力时,油液会迅速汽化而产生大量气泡。这些气泡混杂在油液中,产生空穴,使原来充满管道或液压元件中的油液成为不连续状态,这种现象一般称为空穴现象。
空穴现象一般发生在阀口和液压泵的进油口处。油液流过阀口的狭窄通道时,液流速度增大,压力大幅度下降,就可能出现空穴现象。液压泵的安装高度过高,吸油管道内径过小,吸油阻力太大,或液压泵转速过高,吸油不充足等,均可能产生空穴现象。
液压系统中出现空穴现象后,气泡随油液流到高压区时,在高压作用下气泡会迅速破裂,周围液体质点以高速来填补这一空穴,液体质点间高速碰撞而形成局部液压冲击,使局部的压力和温度均急剧升高,产生强烈的振动和噪声。
在气泡凝聚处附近的管壁和元件表面,因长期承受液压冲击及高温作用,以及油液中逸出气体的较强腐蚀作用,使管壁和元件表面金属颗粒被剥落,这种因空穴现象而产生的表面腐蚀称为气蚀。
为了防止产生空穴现象和气蚀,一般可采取下列措施:
1、减小流径小孔和间隙处的压力降,一般希望小孔和间隙前后的压力比p1/p2&3.5。
2、正确确定液压泵吸油管内径,对管内液体的流速加以限制,降低液压泵的吸油高度,尽量减小吸油管路中的压力损失,管接头良好密封,对于高压泵可采用辅助泵供油。
3、整个系统管路应尽可能直,避免急弯和局部窄缝等。
4、提高元件抗气蚀能力。
VPVC-F30-A1-02
VPVC-F30-A2-02
VPVC-F30-A3-02
VPVC-F30-A4-02
VPVC-F40-A1-02
VPVC-F40-A2-02
VPVC-F40-A3-02
VPVC-F40-A4-02
VPVC-F12-A1-02/03
VPVC-F12-A2-02/03
VPVC-F12-A3-02/03
VPVC-F12-A4-02/03
VPVC-F20-A1-02/03
VPVC-F20-A2-02/03
VPVC-F20-A3-02/03
VPVC-F20-A4-02/03
VPVC-F30-A1-02/03
VPVC-F30-A2-02/03
VPVC-F30-A3-02/03
VPVC-F30-A4-02/03
VPVC-F40-A1-02/03
VPVC-F40-A2-02/03
VPVC-F40-A3-02/03
VPVC-F40-A4-02/03
SVQ25-181开箱:油缸内封有气化性防锈剂,所以,在装配前不得拆下入口的塞子。如果拆下塞子,必须立即安装在机体上,而且在油缸内放满油
2防锈:油缸安装在机体上以后,如果活塞在伸出的情况下放置时,必须在活塞杆的露出部分涂敷油脂。
3速度:一般规格的油缸,当动作速度超过2m/s时,其使用寿命将会受到影响。以0.3m/s作为冲程末端的场合,为了保护机构和安全起见,建议内部安装缓冲机构。另外,使油缸停止时,为了保护油缸机构和安全起见,线路上也必须考虑,以防止发生很大的冲击。为了增加油缸的回油量,线路设计时应该特别注意。在0.5m/min以下低速运转时,将会影响到动作性(特别是振动),所以,低速运转时,应该进行洽谈。
4运转:运转初期,必须完全排清油缸内的空气。残留空气的场合,采取低速充分运转,排除空气。如果油缸内残留空气受急剧夹压时,那么,由于液压油的作用,有可能使密封圈烧损。另外,动作中如果油缸内部产生负压,那么,将有可能由于气蚀作用而发生异常。
特点及分类
VQ45-136在液压传动系统中,各元件或部件产生噪声和传递噪声程度不同,表1列出了液压元件或部件产生和传递噪声的名次。表1 液压元(部)件产生和传递噪声名次表元件与部件 名称液压泵溢流阀压力阀@节流阀方向阀液压缸油箱管路产生噪声的 名次传递噪声的 名次 注:表中@指的是溢流阀之外的压力控制阀 由于液压系统的噪声不只一种,因此最终表现出来的是其合成值,一般来讲,液压系统的噪声不外乎机械噪声和流体噪声两种,下面予以分析说明。
常见问题分析
VQ25-75NT3-C63F.
PV2R1-12R液压泵的结构形式一般有齿轮泵、叶片泵、柱塞泵、螺杆泵
PV2R3-66R为减少噪声,必须对噪声源进行实际调查,测量分析液压系统的声压级,进行频率分析,从而掌握噪声源的大小及频率特性,采取相应办法,具体列举如下:
① 使用低噪声电机;并使用弹性联轴器,以减少该环节引起的振动和噪声;
② 在电动机,液压泵和液压阀的安装面上应设置防振胶垫;
③ 尽量用液压集成块代替管道,以减少振动;
④ 用蓄能器和橡胶软管减少由压力脉动引起的振动,
蓄能器能吸收10 Hz以下的噪声,而高频噪声,用液压软管则十分有效;⑤ 用带有吸声材料的隔声罩,将液压泵罩上也能有效地降低噪声;
⑥ 系统中应设置放气装置。液压件的表面要求及加工
缸筒作为油缸、矿用单体支柱、液压支架、炮管等产品的主要部件,其加工质量的好坏直接影响整个产品的寿命和可靠性。缸筒加工要求高,其内表面粗糙度要求为Ra0.4~0.8um,对同轴度、耐磨性要求严格。缸筒的基本特征是深孔加工,其加工一直困扰加工人员。
采用滚压加工,由于表面层留有表面残余压应力,有助于表面微小裂纹的封闭,阻碍侵蚀作用的扩展。从而提高表面抗腐蚀能力,并能延缓疲劳裂纹的产生或扩大,因而提高缸筒疲劳强度。通过滚压成型,滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了缸筒内壁的耐磨性,同时避免了因磨削引起的烧伤。滚压后,表面粗糙度值的减小,可提高配合性质。
液压阀作为液压系统的控制枢纽,运动频繁,对各组成部分器件的精度要求、密封性、可靠性都要求非常高,国外大部分企业都采用滚压来提高精度配合,如:日本的小松机械、日立机械等,在一些重要部件图纸中都明确要求滚压加工。
滚压及加工
PV2R3-116R
PV2R3-125R
PV2R3-136R
PV2R3-153R
PV2R2-41L工作压力:输入马达油液的实际压力,其大小决定于马达的负载。
马达进口压力与出口压力的差值称为马达的压差。
额定压力:按试验标准规定,使马达连续正常工作的最高压力。
排量:VM (m/rad)
不计泄漏时的流量称理论流量qMt,考虑泄漏流量为实际流量qM。
容积效率ηMv:理论输入流量与实际输入流量的比值,
在不计马达的损失情况下,其输出功率等于输入功率.
实际转矩T:由于马达实际存在机械损失而产生损失扭矩ΔT,使得比理论扭矩Tt小,即马达的机械效率ηMm:等于马达的实际输出扭矩与理论输出扭矩的比.
马达实际输入功率为pqM,实际输出功率为Tω.
马达总效率 ηM:实际输出功率与实际输入功率的比值.
PV2R3-116L
PV2R3-125L
PV2R3-136L
PV2R3-153L
PV2R2-41为减少噪声,必须对噪声源进行实际调查,测量分析液压系统的声压级,进行频率分析,从而掌握噪声源的大小及频率特性,采取相应办法,具体列举如下:
① 使用低噪声电机;并使用弹性联轴器,以减少该环节引起的振动和噪声;
② 在电动机,液压泵和液压阀的安装面上应设置防振胶垫;
③ 尽量用液压集成块代替管道,以减少振动;
④ 用蓄能器和橡胶软管减少由压力脉动引起的振动,
蓄能器能吸收10 Hz以下的噪声,而高频噪声,用液压软管则十分有效;⑤ 用带有吸声材料的隔声罩,将液压泵罩上也能有效地降低噪声;
⑥ 系统中应设置放气装置。液压件的表面要求及加工
缸筒作为油缸、矿用单体支柱、液压支架、炮管等产品的主要部件,其加工质量的好坏直接影响整个产品的寿命和可靠性。缸筒加工要求高,其内表面粗糙度要求为Ra0.4~0.8um,对同轴度、耐磨性要求严格。缸筒的基本特征是深孔加工,其加工一直困扰加工人员。
采用滚压加工,由于表面层留有表面残余压应力,有助于表面微小裂纹的封闭,阻碍侵蚀作用的扩展。从而提高表面抗腐蚀能力,并能延缓疲劳裂纹的产生或扩大,因而提高缸筒疲劳强度。通过滚压成型,滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了缸筒内壁的耐磨性,同时避免了因磨削引起的烧伤。滚压后,表面粗糙度值的减小,可提高配合性质。
液压阀作为液压系统的控制枢纽,运动频繁,对各组成部分器件的精度要求、密封性、可靠性都要求非常高,国外大部分企业都采用滚压来提高精度配合,如:日本的小松机械、日立机械等,在一些重要部件图纸中都明确要求滚压加工。
滚压及加工
PV2R1-10RNT3-C63F.
以上是NT3-C63F.的详细介绍,包括NT3-C63F.的价格、型号、图片、厂家等信息!
商机库包括所有采购、招标信息的汇总
与NT3-C63F.相关的产品信息
NT3-C63F.产品相关搜索
最新液压泵产品
按排行字母分类:
我需要采购液压泵,请供应商联系我....
马可波罗&&全心服务
联系电话:*
允许同品类其他优质供应商联系我

我要回帖

更多关于 ipad看视频卡怎么办 的文章

 

随机推荐