2O22礼盒奥特曼有多大?

兴趣是最好的老师。细心的同学会发现,我们的生活其实与生物息息相关。今天小编在这给大家整理了必修一每章知识点,接下来随着小编一起来看看吧!

高一生物必修一每章知识点

必修1:分子与细胞-科学家访谈 探索生物大分子的奥秘

第1节 从生物圈到细胞

第2节 细胞的多样性和统一性

第2章 组成细胞的分子

第1节 细胞中的元素和化合物

第2节 生命活动的主要承担着——蛋白质

科学史话 世界上第一个人工合成蛋白质的诞生

科学前沿 国际人类蛋白质组计划

第3节 遗传信息的携带者——核酸

第4节 细胞中的糖类和脂质

第5节 细胞中的无机物

第3章 细胞的基本结构

第1节 细胞膜——系统的边界

第2节 细胞器——系统内的分工合作

科学家的细胞世界探微三例

第3节 细胞核——系统的控制中心

第4章 细胞的物质输入和输出

第1节 物质扩膜运输的实例

第2节 生物膜的流动镶嵌模型

第3节 物质跨膜运输的实例

科学前沿 授予诺贝尔化学奖的通道蛋白研究

第5章 细胞的能量供应和利用

第1节 降低化学反应活化能的酶

第2节 细胞的能量“通货”——ATP

第3节 ATP的主要来源——细胞呼吸

第4节 能量来源——光与光合作用

一 捕获光能的色素和结构

二 光合作用的原理和应用

第6章 细胞的生命历程

第3节 细胞的衰老和凋亡

与生物学有关的职业 已远离的检验师

一、 比较原核与真核细胞(多样性)

细胞核 无成形的细胞核,核物质集中在核区。无核膜,无核仁。DNA不和蛋白质结合 有成形的真正的细胞核。有核膜,有核仁。DNA不和蛋白质结合成染色体

细胞质 除核糖体外,无其他细胞器 有各种细胞器

细胞壁 有。但成分和真核不同,主要是肽聚糖 植物细胞、真菌细胞有,动物细胞无

代表 放线菌、细菌、蓝藻、支原体 真菌、植物、动物

植:营养、保护、机械、输导 植:根、茎、叶

细胞 组织 分泌 *** 花、果、种

动:上皮、结缔、肌肉、神经 动:心、肝……

系统(动) 个体 单细胞 种群 群落

生态系统 生产者 生物圈

生物因素 消费者 Ⅱ号

三、细胞学说内容(统一性)

○从人体的解剖和观察入手:维萨里、比夏

○显微镜下的重要发明:虎克、列文虎克

○理论思维和科学实验的结合:施来登、施旺

1. 细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。

2. 细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。

3. 新细胞可以从老细胞中产生。

○在修正中前进:细胞通过分裂产生新的细胞。

注:现代生物学的三大基石

除病毒以外,细胞是生物体结构和功能的基本单位,也是地球上最基本的生命系统。

基本:C、H、O、N (90%)

大量:C、H、O、N、P、S、(97%)K、Ca、Mg

(20种) 最基本:C,占干重的48.4%,生物大分子以碳链为骨架

物质 说明生物界与非生物界的统一性和差异性。

基础 水:主要组成成分;一切生命活动离不开水

无机物 无机盐:对维持生物体的生命活动有重要作用

化合物 蛋白质:生命活动(或性状)的主要承担者/体现者

有机物 糖类:主要的能源物质

一、蛋白质 (占鲜重7-10%,干重50%)

结构 元素组成 C、H、O、N,有的还有P、S、Fe、Zn、Cu、B、Mn、I等

单体 氨基酸 (约20种,必需8种,非必需12种)

化学结构 由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。

(二) 多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。

高级结构 多肽链形成不同的空间结构,分二、三、四级。

结构特点 由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。

功能 ○蛋白质的结构多样性决定了它的特异性/功能多样性。

1. 构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质;

2. 有些蛋白质有催化作用:如各种酶;

3. 有些蛋白质有运输作用:如血红蛋白、载体蛋白;

4. 有些蛋白质有调节作用:如胰岛素、生长激素等;

5. 有些蛋白质有免疫作用:如抗体。

备注 ○连接两个氨基酸分子的键(—NH—CO—)叫肽键。

○各种蛋白质在结构上所具有的共同特点(通式):

1. 每种氨基酸至少都含有一个氨基和一个羧基连同一碳原子上;

2. 各种氨基酸的区别在于R基的不同。

○ 变性(熟鸡蛋)&盐析&凝固(豆腐)

计算 ○由N个aa形成的一条肽链围成环状蛋白质时,产生水/肽键 N 个;

○N个aa形成一条肽链时,产生水/肽键 N-1 个;

○N个aa形成M条肽链时,产生水/肽键 N-M 个;

○N个aa形成M条肽链时,每个aa的平均分子量为α,那么由此形成的蛋白质

的分子量为 N×α-(N-M)×18 ;

一切生物的遗传物质,是遗传信息的载体,是生命活动的控制者。

元素组成 C、H、O、N、P等

分类 脱氧核糖核酸(DNA双链) 核糖核酸(RNA单链)

五碳糖 脱氧核糖 核糖

功能 主要的遗传物质,编码、复制遗

传信息,并决定蛋白质的合成 将遗传信息从DNA传递给

存在 主要存在于细胞核,少量在线粒

体和叶绿体中。甲基绿 主要存在于细胞质中。吡罗红

△ 每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。

元素 类别 存在 生理功能

糖类 C、H、O 单糖 核糖C5H10O5 主细胞质 核糖核酸的组成成分;

脱氧核糖C4H10O5 主细胞核 脱氧核糖核酸的组成成分;

C6H12O6、果糖等 主细胞质 是生物体进行生命活动的重要能源物质(70%以上);

多糖 淀粉、纤维素 植物 (细胞壁的组成成分),

重要的储存能量的物质;

有的 还有N、P 脂肪 动、植物 储存能量、维持体温恒定;

类脂/磷脂 脑、豆 构成生物膜的重要成分;

固醇 胆固醇 动物 动物的重要成分;

性激素 促性***发育和第二性征;

维生素D 促进钙、磷的吸收和利用;

△ 组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

试剂 成分 实验现象 常用材料

脂肪 苏丹Ⅲ 橘*** 花生

还原糖 班氏(加热) 砖红色沉淀 苹果、梨、白萝卜

淀粉 碘液 I2 蓝色 马铃薯

○具有还原性的糖:葡萄糖、麦芽糖、果糖

自由水95% 部分水和细胞中

其他物质结合。 细胞结构的组成成分。

游离形式存在,可以自由流动。 1.细胞内的良好溶剂;

2.参与细胞内许多生物化学反应;

3.水是细胞生活的液态环境;

4.水的流动,把营养物质运送到细胞,并把废物运送到排泄***或直接排出;

无机盐 多数以离子状态存,如K+、

Ca2+、Mg2+、Cl--、PO2+等 1.细胞内某些复杂化合物的重要组成部分,如Fe2+是血红蛋白的主要成分;

2.持生物体的生命活动,细胞的形态和功能;

3.维持细胞的渗透压和酸碱平衡;

化学元素 化合物 原生质 细胞

○原生质 1.泛指细胞内的全部生命物质,但并不包括细胞内的所有物质,如细胞壁;

2.包括细胞膜、细胞质和细胞核三部分;其主要成分为核酸、蛋白质(和脂类);

3.动物细胞可以看作一团原生质。

○细胞质 : 指细胞中细胞膜以内、细胞核以外的全部原生质。

○原生质层:成熟的植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质,为一层半透膜。

细胞壁(植物特有): 纤维素+果胶,支持和保护作用

成分:脂质(主磷脂)50%、蛋白质约40%、糖类2%-10%

作用:隔开细胞和环境;控制物质进出;细胞间信息交流;

真核 基质: 有水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等

细胞 细胞质 是活细胞进行新陈代谢的主要场所。

分工:线、内、高、核、溶、中、叶、液、

协调配合:分泌蛋白的合成与分泌;生物膜系统

核膜:双层膜,分开核内物质和细胞质

核孔:实现核质之间频繁的物质交流和信息交流

细胞核 核仁:与某种RNA的合成以及核糖体的形成有关

染色质:由DNA和蛋白质组成,DNA是遗传信息的载体

一、 细胞器 差速离心:美国 克劳德

线粒体 叶绿体 高尔基体 内质网 液泡 核糖体 中心体

分布 动植物 植物 动植物 动植物 植物和某

些原生动物 动植物 动物

形态 椭球形、棒形 扁平的球形或椭球形 大小囊泡、扁平囊 网状 椭球形粒状小体

结构 双层膜,有少量DNA 单层膜,形成囊泡状和管状,内有腔 没有膜结构

嵴(TP酶复合体)、基粒、基质 基粒(类体)、基质(片层结构)、酶 外连细胞膜,内连核膜 液泡膜、细胞液 蛋白质、RNA、和酶 两个互相垂直的中心粒

功能 有氧呼吸的主场所 进行光合作用的场所 细胞分泌,

成细胞壁 提供合成、运输条件 贮存物质,调节内环境 蛋白质合成的场所 与有丝分裂有关

△ 细胞器是指在细胞质中具有一定形态结构和执行一定生理功能的结构单位,

三、协调配合 分泌蛋白 放射性同位素示踪法:罗马尼亚 帕拉德

基因调控 初步合成 加工 修饰

细胞核 核糖体 内质网 高尔基体 细胞膜 胞外

氨基酸 肽链 一定空间结构

○生物膜系统:细胞器膜 + 细胞膜 + 核膜等形成的结构体系

四、细胞核 = 核膜(双层) + 核仁 + 染色质 + 核液

美西螈实验、蝾螈横缢实验、变形虫实验、伞藻嫁接与移植实验

细胞核是遗传信息储存和复制的场所,是代谢活动和遗传特性的控制中心。

○ 染色质和染色体是同一物质在细胞周期不同阶段相互转变的形态结构。

○ + = 核小体(串珠结构) 染色质 30nm纤维

0.4um超螺旋管(圆筒形) 2-10um染色单体(圆柱状、杆状)

二、树立观点(基本思想)

1.有一定的结构就必然有与之相对应功能的存在;

2.任何功能都需要一定的结构来完成

1.各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存;

2.细胞的生物膜系统体现细胞各结构之间的协调配合。

○生物的整体性:整体大于各部分之和;只有在各部分组成一个整体的时才能体现出生命现象。

1.结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。

2.功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。

3.调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。

4.与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。

细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。

○科学家研究细胞膜结构的历程是从物质跨膜运输的现象开始的,分析成分是了解结构的基础,现象和功能又提供了探究结构的线索。人们在实验观察的基础上提出假说,又通过进一步的实验来修正假说,其中与技术的进步起到关键的作用

成分:磷脂和蛋白质和糖类

结构:单位膜(三明治)→ 流动镶嵌模型

细胞膜 特性 结构特点:具有相对的流动性

生理特性:选择透过性(对离子和小分子物质具选择性)

功能 控制细胞内外物质交换

细胞识别、分泌、排泄、免疫等

一、物质跨膜运输的实例

现象 动物 失水皱缩 吸水膨胀甚至涨破

植物 质壁分离 质壁分离复原

原理 外因 水分的渗透作用

内因 原生质层与细胞壁的伸缩性不同造成收缩幅度不同

结论 细胞的吸水和失水是水分顺相对含量梯度跨膜运输的过程

○ 渗透现象发生的条件:半透膜、细胞内外浓度差

○ 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

○ 半透膜:指一类可以让小分子物质通过而大分子物质不能通过的一类薄膜的总称。

○ 质壁分离与复原实验可拓展应用于:(指的是原生质层与细胞壁)

①证明成熟植物细胞发生渗透作用; ②证明细胞是否是活的;

③作为光学显微镜下观察细胞膜的方法; ④初步测定细胞液浓度的大小;

2. 无机盐等其他物质

① 不同生物吸收无机盐的种类和数量不同。

② 物质跨膜运输既有顺浓度梯度的,也有逆浓度梯度的。

可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子、小分子和大分子则不能通过的膜。

□ 生物膜是一种选择透过性膜,是严格的半透膜。

①磷脂双分子层 构成生物膜的基本支架,但这个支架不是静止的,它具有流动性。

②蛋白质 镶嵌、贯穿、覆盖在磷脂双分子层上,大多数蛋白质也是可以流动的。

③天然糖蛋白 蛋白质和糖类结合成天然糖蛋白,形成糖被具有保护、润滑和细胞识别等

相同点:组成细胞膜的主要物质是脂质和蛋白质

不同点:①流:蛋白质的分布有不均匀和不对称性;强调组成膜的分子是运动的。

②单:蛋白质均匀分布在脂双层的两侧;认为生物膜是静止结构。

例子|方式| 浓度梯度| 载体| 能量| 作用

水、甘油、气体、乙醇、苯| 自由扩散| 顺 ×| ×| 被选择吸收的物质从高浓度的一侧通过细胞膜向浓度低的一侧转运

葡萄糖进入红细胞| 协助扩散| 顺| √| ×

进入红细胞的钾离子 |主动运输| 逆| √| √| 能保证活细胞按照生命活动的需要,主动地选择吸收所需要

的物质,排出新陈代谢产生的废物和对细胞要害的物质。

○大分子或颗粒:胞吞、胞吐

磷脂分子+蛋白质分子 结构 功能(物质交换)

运动性 流动性 物质交换正常 选择透过性

成分组成结构,结构决定功能。构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,因此决定了由它们构成的细胞膜的结构具有一定的流动性。结构的流动性保证了载体蛋白能把相应的物质从细胞膜的一侧转运到到另一侧。由于细胞膜上不同载体的数量不同,所以,当物质进出细胞时能体现出不同的物质进出细胞膜的数量、速度及难易程度的不同,即反映出物质交换过程中的选择透过性。可见,流动性是细胞膜结构的固有属性,无论细胞是否与外界发生物质交换关系,流动性总是存在的,而选择透过性是细胞膜生理特性的描述,这一特性,只有在流动性基础上,完成物质交换功能方能体现出来。

五)细胞的能量供应和利用

一、 酶——降低反应活化能

◎ 新陈/细胞代谢:活细胞内全部有序化学反应的总称。

◎ 活化能:分子从常态转变成容易发生化学反应的活跃状态所需要的能量。

①巴斯德之前:发酵是纯化学反应,与生命活动无关。

②巴斯德(法、微生物学家):发酵与活细胞有关;发酵是整个细胞。

③利比希(德、化学家):引起发酵的是细胞中的某些物质,但这些物质只有在酵母细胞死亡并裂解后才能发挥作用。

④比希纳(德、化学家):酵母细胞中的某些物质能够在酵母细胞破碎后继续起催化作用,就像在活酵母细胞中一样。

⑤萨姆纳(美、科学家):从刀豆种子提纯出来的脲酶是一种蛋白质。

⑦切赫与奥特曼(美、科学家):少数RNA具有生物催化功能。

酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。

①由活细胞产生(与核糖体有关)

②催化性质:A.比无机催化剂更能减低化学反应的活化能,提高化学反应速度。

B.反应前后酶的性质和数量没有变化。

③成分:绝大多数酶是蛋白质,少数酶是RNA。

① 高效性:催化效率很高,使反应速度很快,是一般无机催化集的107——1013倍。

② 专一性:每一种酶只能催化一种或一类化学反应。 → 多样性 。

③ 需要合适的条件(温度和pH值) → 温和性 → 易变性 。

酶的催化作用需要适宜的温度、pH值等,过酸、过碱、高温都会破坏酶分子结构。低温也会影响酶的活性,但不破坏酶的分子结构。

解析 在底物足够,其他因素固定的条件下,酶促反应的速度与酶浓度成正比。 1.在S较低时,V随S增加而加快,近乎成正比;

2.在S较低时,V随S增加而加快,但不显著;

3.当S很大且达到一定限度时,V也达到一个最大值,此时即使再增加S,反应也几乎不再改变。

1.在一定T内V随T的

2.在一定条件下,每一种酶在某一T时活力最大,称最适温度;

3.当T升高到一定限度时,V反而随温度的升高而降低。

◎动物T:35—40℃

生产提取 制成 酶制剂 应用 治疗疾病;加工和生产一些产品;

和分离纯化 固定化酶 化验诊断和水质检测;其他分支。

二、ATP(三磷酸腺苷)

◎ ATP是生物体细胞内普遍存在的一种高能磷酸化合物,是生物体进行各项生命活动的直接

能源,它的水解与合成存在着能量的释放与贮存。

(细胞质基质) 能 吸收分泌(渗透能)

(叶绿体) 放 肌肉收缩(机械能)

光合作用 Pi 能 神经传导、生物电(电能)

ADP (每个活细胞) 合成代谢(化学能)

◎ 糖类—主要能源物质 热能 散失

太阳光能 脂肪—主要储能物质 氧化

(直接能源) 蛋白质—能源物质之一 *** 化学能 ATP

3.能产生ATP: 线粒体、叶绿体、细胞质基质

能产生水: 线粒体、叶绿体、核糖体、细胞核

能碱基互补: 线粒体、叶绿体、核糖体、细胞核

三、ATP的主要来源——细胞呼吸

◎呼吸是通过呼吸运动吸进氧气,排出二氧化碳的过程。

◎细胞呼吸是指有机物在细胞内经过一系列的氧化***,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。分为:

概念 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化***,产生二氧化碳和水,释放能量,生成许多ATP的过程。 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物***成不彻底的氧化产物,同时释放出少量能量的过程。

不同点 场所 : ①②线粒体基质 ③内膜 始终在细胞质基质

条件 : 除①外,需分子氧、酶 不需分子氧、需酶

相同点 联系 : 从葡萄糖***成丙酮酸阶段相同,以后阶段不同

实质 : ***有机物,释放能量,合成ATP

意义 : 为生物体的各项生命活动提供能量;为体内其他化合物合成提供原料

反应场所 绿色植物(在叶绿体中进行) 所有生物(主要在线粒体中进行)

反应条件 光、色素、酶 酶(时刻进行)

物质转变 把无机物CO2和H2O合成有机物(CH2O) ***有机物产生CO2和H2O

能量转变 把光能转变成化学能储存在有机物中 释放有机物的能量,部分转移ATP

实质 合成有机物、储存能量 ***有机物、释放能量、产生ATP

通过光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。

◎光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的

有机物,并释放出氧气的过程。影响因素有:光、温度、CO2浓度、水分、矿质元素等。

内容 时间 过程 结论

普里斯特 1771年 蜡烛、小鼠、绿色植物实验 植物可以更新空气

萨克斯 1864年 叶片遮光实验 绿色植物在光合作用中产生淀粉

恩格尔曼 1880年 水绵光合作用实验 叶绿体是光合作用的场所释放出氧。

鲁宾与卡门 1939年 同位素标记法 光合作用释放的氧全来自水

基粒 多个类囊体(片层)堆叠而成

胡萝卜素(橙***)1/3

类胡萝卜素 叶黄素(***) 2/3 吸蓝紫光

色素 (1/4) 叶绿素A(蓝绿色)3/4

叶绿素(3/4) 叶绿素B(黄绿色)1/4 吸红橙和蓝紫光

条件 光、色素、酶 CO2、[H]、ATP、酶

场所 内囊体的薄膜 叶绿体的基质

② ATP的合成/光合磷酸化

实质 光能 → 化学能,释放O2 同化CO2,形成(CH2O)

能变 光能 → ATP中活跃的化学能 → 有机物中稳定的化学能

◎ 人为创设条件,看物质变化:

切断 → 不能生成 → 不能进行 → 不能生成

生物与生物之间的关系有什么

生物与生物之间的关系有原始合作、共栖关系、共生关系、寄生关系、捕食关系和竞争关系。生物与生物之间的关系通常是围绕物质、能量、信息和栖所等方面来展开的,其中尤其是食物联系。

原始合作:指两种生物共居在一起,对双方都有一定程度的利益,但彼此分开后,各自又都能够独立生活。这是一种比较松懈的种间合作关系。

共栖关系:指两种共居,一方受益,另一方也无害或无大害。前者称共栖者,后者称宿主。共栖者是主动的。按共栖状况分为外共栖和内共栖。彼此分离后,有的共栖者往往不能独立生活。这是一种比较密切的种间合作关系。

共生关系:共生有广义的和狭义的两种概念。狭义的是指两种共居一起,彼此创造有利的生活条件,较之单独生活时更为有利,更有生活力;相互依赖,相互依存,一旦分离,双方都不能正常地生活。按共居状况分为外共生和内共生。

寄生关系:指一种生物生活在另一种生物的体内或体表,并从后者摄取营养以维持生活的种间关系。前者称寄生物,后者称寄生。

捕食关系:指一种生物以另一种生物为食的种间关系。前者谓之捕食者,后者谓被捕食者。例如,兔和草类、狼和兔等都是捕食关系。在通常情况下,捕食者为大个体,被捕食者为小个体,以大食小。

竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。

高一生物必修一每章知识点相关:

我要回帖

更多关于 奥特曼一共有多少个 的文章

 

随机推荐